Questions?
See the FAQ
or other info.

Polytope of Type {6,6}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,6}*384d
if this polytope has a name.
Group : SmallGroup(384,17949)
Rank : 3
Schlafli Type : {6,6}
Number of vertices, edges, etc : 32, 96, 32
Order of s0s1s2 : 8
Order of s0s1s2s1 : 6
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
Facet Of :
   {6,6,2} of size 768
Vertex Figure Of :
   {2,6,6} of size 768
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {6,3}*192
   4-fold quotients : {6,6}*96
   8-fold quotients : {3,6}*48, {6,3}*48
   16-fold quotients : {3,3}*24
   48-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   2-fold covers : {12,6}*768c, {6,12}*768e, {6,6}*768d, {12,6}*768g, {6,12}*768h
   3-fold covers : {6,6}*1152b, {6,6}*1152f
   5-fold covers : {6,30}*1920a, {30,6}*1920c
Permutation Representation (GAP) :
s0 := ( 3, 4)( 5,10)( 6, 9)( 7,11)( 8,12)(15,16)(17,33)(18,34)(19,36)(20,35)
(21,42)(22,41)(23,43)(24,44)(25,38)(26,37)(27,39)(28,40)(29,45)(30,46)(31,48)
(32,47)(51,52)(53,58)(54,57)(55,59)(56,60)(63,64)(65,81)(66,82)(67,84)(68,83)
(69,90)(70,89)(71,91)(72,92)(73,86)(74,85)(75,87)(76,88)(77,93)(78,94)(79,96)
(80,95);;
s1 := ( 1,17)( 2,19)( 3,18)( 4,20)( 5,24)( 6,22)( 7,23)( 8,21)( 9,32)(10,30)
(11,31)(12,29)(13,28)(14,26)(15,27)(16,25)(34,35)(37,40)(41,48)(42,46)(43,47)
(44,45)(49,65)(50,67)(51,66)(52,68)(53,72)(54,70)(55,71)(56,69)(57,80)(58,78)
(59,79)(60,77)(61,76)(62,74)(63,75)(64,73)(82,83)(85,88)(89,96)(90,94)(91,95)
(92,93);;
s2 := ( 1,61)( 2,62)( 3,64)( 4,63)( 5,54)( 6,53)( 7,55)( 8,56)( 9,58)(10,57)
(11,59)(12,60)(13,49)(14,50)(15,52)(16,51)(17,93)(18,94)(19,96)(20,95)(21,86)
(22,85)(23,87)(24,88)(25,90)(26,89)(27,91)(28,92)(29,81)(30,82)(31,84)(32,83)
(33,77)(34,78)(35,80)(36,79)(37,70)(38,69)(39,71)(40,72)(41,74)(42,73)(43,75)
(44,76)(45,65)(46,66)(47,68)(48,67);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(96)!( 3, 4)( 5,10)( 6, 9)( 7,11)( 8,12)(15,16)(17,33)(18,34)(19,36)
(20,35)(21,42)(22,41)(23,43)(24,44)(25,38)(26,37)(27,39)(28,40)(29,45)(30,46)
(31,48)(32,47)(51,52)(53,58)(54,57)(55,59)(56,60)(63,64)(65,81)(66,82)(67,84)
(68,83)(69,90)(70,89)(71,91)(72,92)(73,86)(74,85)(75,87)(76,88)(77,93)(78,94)
(79,96)(80,95);
s1 := Sym(96)!( 1,17)( 2,19)( 3,18)( 4,20)( 5,24)( 6,22)( 7,23)( 8,21)( 9,32)
(10,30)(11,31)(12,29)(13,28)(14,26)(15,27)(16,25)(34,35)(37,40)(41,48)(42,46)
(43,47)(44,45)(49,65)(50,67)(51,66)(52,68)(53,72)(54,70)(55,71)(56,69)(57,80)
(58,78)(59,79)(60,77)(61,76)(62,74)(63,75)(64,73)(82,83)(85,88)(89,96)(90,94)
(91,95)(92,93);
s2 := Sym(96)!( 1,61)( 2,62)( 3,64)( 4,63)( 5,54)( 6,53)( 7,55)( 8,56)( 9,58)
(10,57)(11,59)(12,60)(13,49)(14,50)(15,52)(16,51)(17,93)(18,94)(19,96)(20,95)
(21,86)(22,85)(23,87)(24,88)(25,90)(26,89)(27,91)(28,92)(29,81)(30,82)(31,84)
(32,83)(33,77)(34,78)(35,80)(36,79)(37,70)(38,69)(39,71)(40,72)(41,74)(42,73)
(43,75)(44,76)(45,65)(46,66)(47,68)(48,67);
poly := sub<Sym(96)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1 >; 
 
References : None.
to this polytope