Questions?
See the FAQ
or other info.

# Polytope of Type {24,4,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {24,4,2}*384c
if this polytope has a name.
Group : SmallGroup(384,18015)
Rank : 4
Schlafli Type : {24,4,2}
Number of vertices, edges, etc : 24, 48, 4, 2
Order of s0s1s2s3 : 24
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{24,4,2,2} of size 768
{24,4,2,3} of size 1152
{24,4,2,5} of size 1920
Vertex Figure Of :
{2,24,4,2} of size 768
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {12,4,2}*192b
4-fold quotients : {6,4,2}*96c
8-fold quotients : {3,4,2}*48
Covers (Minimal Covers in Boldface) :
2-fold covers : {48,4,2}*768c, {48,4,2}*768d, {24,4,2}*768c
3-fold covers : {72,4,2}*1152c
5-fold covers : {120,4,2}*1920c
Permutation Representation (GAP) :
```s0 := ( 2, 3)( 5, 9)( 6,11)( 7,10)( 8,12)(14,15)(17,21)(18,23)(19,22)(20,24)
(25,37)(26,39)(27,38)(28,40)(29,45)(30,47)(31,46)(32,48)(33,41)(34,43)(35,42)
(36,44)(49,73)(50,75)(51,74)(52,76)(53,81)(54,83)(55,82)(56,84)(57,77)(58,79)
(59,78)(60,80)(61,85)(62,87)(63,86)(64,88)(65,93)(66,95)(67,94)(68,96)(69,89)
(70,91)(71,90)(72,92);;
s1 := ( 1,53)( 2,54)( 3,56)( 4,55)( 5,49)( 6,50)( 7,52)( 8,51)( 9,57)(10,58)
(11,60)(12,59)(13,65)(14,66)(15,68)(16,67)(17,61)(18,62)(19,64)(20,63)(21,69)
(22,70)(23,72)(24,71)(25,89)(26,90)(27,92)(28,91)(29,85)(30,86)(31,88)(32,87)
(33,93)(34,94)(35,96)(36,95)(37,77)(38,78)(39,80)(40,79)(41,73)(42,74)(43,76)
(44,75)(45,81)(46,82)(47,84)(48,83);;
s2 := ( 1, 4)( 2, 3)( 5, 8)( 6, 7)( 9,12)(10,11)(13,16)(14,15)(17,20)(18,19)
(21,24)(22,23)(25,28)(26,27)(29,32)(30,31)(33,36)(34,35)(37,40)(38,39)(41,44)
(42,43)(45,48)(46,47)(49,52)(50,51)(53,56)(54,55)(57,60)(58,59)(61,64)(62,63)
(65,68)(66,67)(69,72)(70,71)(73,76)(74,75)(77,80)(78,79)(81,84)(82,83)(85,88)
(86,87)(89,92)(90,91)(93,96)(94,95);;
s3 := (97,98);;
poly := Group([s0,s1,s2,s3]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s1*s2*s1*s2*s1*s2*s1*s2, s2*s1*s0*s2*s1*s2*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(98)!( 2, 3)( 5, 9)( 6,11)( 7,10)( 8,12)(14,15)(17,21)(18,23)(19,22)
(20,24)(25,37)(26,39)(27,38)(28,40)(29,45)(30,47)(31,46)(32,48)(33,41)(34,43)
(35,42)(36,44)(49,73)(50,75)(51,74)(52,76)(53,81)(54,83)(55,82)(56,84)(57,77)
(58,79)(59,78)(60,80)(61,85)(62,87)(63,86)(64,88)(65,93)(66,95)(67,94)(68,96)
(69,89)(70,91)(71,90)(72,92);
s1 := Sym(98)!( 1,53)( 2,54)( 3,56)( 4,55)( 5,49)( 6,50)( 7,52)( 8,51)( 9,57)
(10,58)(11,60)(12,59)(13,65)(14,66)(15,68)(16,67)(17,61)(18,62)(19,64)(20,63)
(21,69)(22,70)(23,72)(24,71)(25,89)(26,90)(27,92)(28,91)(29,85)(30,86)(31,88)
(32,87)(33,93)(34,94)(35,96)(36,95)(37,77)(38,78)(39,80)(40,79)(41,73)(42,74)
(43,76)(44,75)(45,81)(46,82)(47,84)(48,83);
s2 := Sym(98)!( 1, 4)( 2, 3)( 5, 8)( 6, 7)( 9,12)(10,11)(13,16)(14,15)(17,20)
(18,19)(21,24)(22,23)(25,28)(26,27)(29,32)(30,31)(33,36)(34,35)(37,40)(38,39)
(41,44)(42,43)(45,48)(46,47)(49,52)(50,51)(53,56)(54,55)(57,60)(58,59)(61,64)
(62,63)(65,68)(66,67)(69,72)(70,71)(73,76)(74,75)(77,80)(78,79)(81,84)(82,83)
(85,88)(86,87)(89,92)(90,91)(93,96)(94,95);
s3 := Sym(98)!(97,98);
poly := sub<Sym(98)|s0,s1,s2,s3>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s1*s2*s1*s2*s1*s2*s1*s2,
s2*s1*s0*s2*s1*s2*s1*s0*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;

```

to this polytope