Questions?
See the FAQ
or other info.

Polytope of Type {4,6,8}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,6,8}*384b
if this polytope has a name.
Group : SmallGroup(384,18032)
Rank : 4
Schlafli Type : {4,6,8}
Number of vertices, edges, etc : 4, 12, 24, 8
Order of s0s1s2s3 : 24
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {4,6,8,2} of size 768
Vertex Figure Of :
   {2,4,6,8} of size 768
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {4,6,4}*192c
   4-fold quotients : {4,6,2}*96c
   8-fold quotients : {4,3,2}*48
Covers (Minimal Covers in Boldface) :
   2-fold covers : {4,12,8}*768c, {4,12,8}*768d, {4,6,16}*768b, {4,6,8}*768a
   3-fold covers : {4,18,8}*1152b, {4,6,24}*1152d, {4,6,24}*1152e
   5-fold covers : {4,6,40}*1920b, {4,30,8}*1920b
Permutation Representation (GAP) :
s0 := ( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,11)(10,12)(13,15)(14,16)(17,19)(18,20)
(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)
(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64)
(65,67)(66,68)(69,71)(70,72)(73,75)(74,76)(77,79)(78,80)(81,83)(82,84)(85,87)
(86,88)(89,91)(90,92)(93,95)(94,96);;
s1 := ( 2, 3)( 5, 9)( 6,11)( 7,10)( 8,12)(14,15)(17,21)(18,23)(19,22)(20,24)
(26,27)(29,33)(30,35)(31,34)(32,36)(38,39)(41,45)(42,47)(43,46)(44,48)(50,51)
(53,57)(54,59)(55,58)(56,60)(62,63)(65,69)(66,71)(67,70)(68,72)(74,75)(77,81)
(78,83)(79,82)(80,84)(86,87)(89,93)(90,95)(91,94)(92,96);;
s2 := ( 1, 9)( 2,12)( 3,11)( 4,10)( 6, 8)(13,21)(14,24)(15,23)(16,22)(18,20)
(25,45)(26,48)(27,47)(28,46)(29,41)(30,44)(31,43)(32,42)(33,37)(34,40)(35,39)
(36,38)(49,81)(50,84)(51,83)(52,82)(53,77)(54,80)(55,79)(56,78)(57,73)(58,76)
(59,75)(60,74)(61,93)(62,96)(63,95)(64,94)(65,89)(66,92)(67,91)(68,90)(69,85)
(70,88)(71,87)(72,86);;
s3 := ( 1,49)( 2,50)( 3,51)( 4,52)( 5,53)( 6,54)( 7,55)( 8,56)( 9,57)(10,58)
(11,59)(12,60)(13,61)(14,62)(15,63)(16,64)(17,65)(18,66)(19,67)(20,68)(21,69)
(22,70)(23,71)(24,72)(25,85)(26,86)(27,87)(28,88)(29,89)(30,90)(31,91)(32,92)
(33,93)(34,94)(35,95)(36,96)(37,73)(38,74)(39,75)(40,76)(41,77)(42,78)(43,79)
(44,80)(45,81)(46,82)(47,83)(48,84);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s3*s2*s1*s2*s3*s2, s0*s1*s2*s1*s0*s1*s2*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(96)!( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,11)(10,12)(13,15)(14,16)(17,19)
(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)
(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)
(62,64)(65,67)(66,68)(69,71)(70,72)(73,75)(74,76)(77,79)(78,80)(81,83)(82,84)
(85,87)(86,88)(89,91)(90,92)(93,95)(94,96);
s1 := Sym(96)!( 2, 3)( 5, 9)( 6,11)( 7,10)( 8,12)(14,15)(17,21)(18,23)(19,22)
(20,24)(26,27)(29,33)(30,35)(31,34)(32,36)(38,39)(41,45)(42,47)(43,46)(44,48)
(50,51)(53,57)(54,59)(55,58)(56,60)(62,63)(65,69)(66,71)(67,70)(68,72)(74,75)
(77,81)(78,83)(79,82)(80,84)(86,87)(89,93)(90,95)(91,94)(92,96);
s2 := Sym(96)!( 1, 9)( 2,12)( 3,11)( 4,10)( 6, 8)(13,21)(14,24)(15,23)(16,22)
(18,20)(25,45)(26,48)(27,47)(28,46)(29,41)(30,44)(31,43)(32,42)(33,37)(34,40)
(35,39)(36,38)(49,81)(50,84)(51,83)(52,82)(53,77)(54,80)(55,79)(56,78)(57,73)
(58,76)(59,75)(60,74)(61,93)(62,96)(63,95)(64,94)(65,89)(66,92)(67,91)(68,90)
(69,85)(70,88)(71,87)(72,86);
s3 := Sym(96)!( 1,49)( 2,50)( 3,51)( 4,52)( 5,53)( 6,54)( 7,55)( 8,56)( 9,57)
(10,58)(11,59)(12,60)(13,61)(14,62)(15,63)(16,64)(17,65)(18,66)(19,67)(20,68)
(21,69)(22,70)(23,71)(24,72)(25,85)(26,86)(27,87)(28,88)(29,89)(30,90)(31,91)
(32,92)(33,93)(34,94)(35,95)(36,96)(37,73)(38,74)(39,75)(40,76)(41,77)(42,78)
(43,79)(44,80)(45,81)(46,82)(47,83)(48,84);
poly := sub<Sym(96)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s1*s0*s1*s0*s1*s0*s1, s1*s2*s3*s2*s1*s2*s3*s2, 
s0*s1*s2*s1*s0*s1*s2*s0*s1, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 
References : None.
to this polytope