Questions?
See the FAQ
or other info.

Polytope of Type {2,2,12,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,2,12,4}*384a
if this polytope has a name.
Group : SmallGroup(384,18267)
Rank : 5
Schlafli Type : {2,2,12,4}
Number of vertices, edges, etc : 2, 2, 12, 24, 4
Order of s0s1s2s3s4 : 12
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {2,2,12,4,2} of size 768
Vertex Figure Of :
   {2,2,2,12,4} of size 768
   {3,2,2,12,4} of size 1152
   {5,2,2,12,4} of size 1920
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,2,12,2}*192, {2,2,6,4}*192a
   3-fold quotients : {2,2,4,4}*128
   4-fold quotients : {2,2,6,2}*96
   6-fold quotients : {2,2,2,4}*64, {2,2,4,2}*64
   8-fold quotients : {2,2,3,2}*48
   12-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
   2-fold covers : {2,4,12,4}*768a, {4,2,12,4}*768a, {2,2,12,8}*768a, {2,2,24,4}*768a, {2,2,12,8}*768b, {2,2,24,4}*768b, {2,2,12,4}*768a
   3-fold covers : {2,2,36,4}*1152a, {2,6,12,4}*1152a, {2,6,12,4}*1152b, {6,2,12,4}*1152a, {2,2,12,12}*1152a, {2,2,12,12}*1152c
   5-fold covers : {2,2,60,4}*1920a, {2,10,12,4}*1920a, {10,2,12,4}*1920a, {2,2,12,20}*1920
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (3,4);;
s2 := ( 6, 7)( 8, 9)(10,14)(12,16)(13,15)(19,24)(20,23)(21,22)(25,26)(27,28);;
s3 := ( 5,12)( 6, 8)( 7,21)( 9,13)(10,27)(11,15)(14,25)(16,22)(17,23)(18,19)
(20,28)(24,26);;
s4 := ( 6,10)( 7,14)(12,19)(13,20)(15,23)(16,24);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1, 
s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s2*s3*s4*s3*s2*s3*s4*s3, 
s3*s4*s3*s4*s3*s4*s3*s4, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(28)!(1,2);
s1 := Sym(28)!(3,4);
s2 := Sym(28)!( 6, 7)( 8, 9)(10,14)(12,16)(13,15)(19,24)(20,23)(21,22)(25,26)
(27,28);
s3 := Sym(28)!( 5,12)( 6, 8)( 7,21)( 9,13)(10,27)(11,15)(14,25)(16,22)(17,23)
(18,19)(20,28)(24,26);
s4 := Sym(28)!( 6,10)( 7,14)(12,19)(13,20)(15,23)(16,24);
poly := sub<Sym(28)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s2*s3*s4*s3*s2*s3*s4*s3, s3*s4*s3*s4*s3*s4*s3*s4, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 

to this polytope