Questions?
See the FAQ
or other info.

# Polytope of Type {2,12,4,2}

Atlas Canonical Name : {2,12,4,2}*384a
if this polytope has a name.
Group : SmallGroup(384,18267)
Rank : 5
Schlafli Type : {2,12,4,2}
Number of vertices, edges, etc : 2, 12, 24, 4, 2
Order of s0s1s2s3s4 : 12
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{2,12,4,2,2} of size 768
{2,12,4,2,3} of size 1152
{2,12,4,2,5} of size 1920
Vertex Figure Of :
{2,2,12,4,2} of size 768
{3,2,12,4,2} of size 1152
{5,2,12,4,2} of size 1920
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,12,2,2}*192, {2,6,4,2}*192a
3-fold quotients : {2,4,4,2}*128
4-fold quotients : {2,6,2,2}*96
6-fold quotients : {2,2,4,2}*64, {2,4,2,2}*64
8-fold quotients : {2,3,2,2}*48
12-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
2-fold covers : {2,12,4,4}*768, {4,12,4,2}*768a, {2,12,8,2}*768a, {2,24,4,2}*768a, {2,12,8,2}*768b, {2,24,4,2}*768b, {2,12,4,2}*768a
3-fold covers : {2,36,4,2}*1152a, {2,12,4,6}*1152, {6,12,4,2}*1152a, {6,12,4,2}*1152b, {2,12,12,2}*1152a, {2,12,12,2}*1152c
5-fold covers : {2,60,4,2}*1920a, {2,12,4,10}*1920, {10,12,4,2}*1920a, {2,12,20,2}*1920
Permutation Representation (GAP) :
```s0 := (1,2);;
s1 := ( 4, 5)( 6, 7)( 8,12)(10,14)(11,13)(17,22)(18,21)(19,20)(23,24)(25,26);;
s2 := ( 3,10)( 4, 6)( 5,19)( 7,11)( 8,25)( 9,13)(12,23)(14,20)(15,21)(16,17)
(18,26)(22,24);;
s3 := ( 4, 8)( 5,12)(10,17)(11,18)(13,21)(14,22);;
s4 := (27,28);;
poly := Group([s0,s1,s2,s3,s4]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s3*s4*s3*s4, s1*s2*s3*s2*s1*s2*s3*s2,
s2*s3*s2*s3*s2*s3*s2*s3, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(28)!(1,2);
s1 := Sym(28)!( 4, 5)( 6, 7)( 8,12)(10,14)(11,13)(17,22)(18,21)(19,20)(23,24)
(25,26);
s2 := Sym(28)!( 3,10)( 4, 6)( 5,19)( 7,11)( 8,25)( 9,13)(12,23)(14,20)(15,21)
(16,17)(18,26)(22,24);
s3 := Sym(28)!( 4, 8)( 5,12)(10,17)(11,18)(13,21)(14,22);
s4 := Sym(28)!(27,28);
poly := sub<Sym(28)|s0,s1,s2,s3,s4>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s1*s2*s3*s2*s1*s2*s3*s2, s2*s3*s2*s3*s2*s3*s2*s3,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;

```

to this polytope