Questions?
See the FAQ
or other info.

Polytope of Type {12,2,4,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {12,2,4,2}*384
if this polytope has a name.
Group : SmallGroup(384,18354)
Rank : 5
Schlafli Type : {12,2,4,2}
Number of vertices, edges, etc : 12, 12, 4, 4, 2
Order of s0s1s2s3s4 : 12
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {12,2,4,2,2} of size 768
   {12,2,4,2,3} of size 1152
   {12,2,4,2,5} of size 1920
Vertex Figure Of :
   {2,12,2,4,2} of size 768
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {12,2,2,2}*192, {6,2,4,2}*192
   3-fold quotients : {4,2,4,2}*128
   4-fold quotients : {3,2,4,2}*96, {6,2,2,2}*96
   6-fold quotients : {2,2,4,2}*64, {4,2,2,2}*64
   8-fold quotients : {3,2,2,2}*48
   12-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
   2-fold covers : {12,4,4,2}*768, {12,2,4,4}*768, {12,2,8,2}*768, {24,2,4,2}*768
   3-fold covers : {36,2,4,2}*1152, {12,2,4,6}*1152a, {12,6,4,2}*1152b, {12,6,4,2}*1152c, {12,2,12,2}*1152
   5-fold covers : {60,2,4,2}*1920, {12,2,4,10}*1920, {12,10,4,2}*1920, {12,2,20,2}*1920
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 5)( 7,10)( 8, 9)(11,12);;
s1 := ( 1, 7)( 2, 4)( 3,11)( 5, 8)( 6, 9)(10,12);;
s2 := (14,15);;
s3 := (13,14)(15,16);;
s4 := (17,18);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s3*s4*s3*s4, s2*s3*s2*s3*s2*s3*s2*s3, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(18)!( 2, 3)( 4, 5)( 7,10)( 8, 9)(11,12);
s1 := Sym(18)!( 1, 7)( 2, 4)( 3,11)( 5, 8)( 6, 9)(10,12);
s2 := Sym(18)!(14,15);
s3 := Sym(18)!(13,14)(15,16);
s4 := Sym(18)!(17,18);
poly := sub<Sym(18)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4, 
s2*s3*s2*s3*s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope