Questions?
See the FAQ
or other info.

Polytope of Type {2,4,6,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,4,6,4}*384c
if this polytope has a name.
Group : SmallGroup(384,20051)
Rank : 5
Schlafli Type : {2,4,6,4}
Number of vertices, edges, etc : 2, 4, 12, 12, 4
Order of s0s1s2s3s4 : 12
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {2,4,6,4,2} of size 768
Vertex Figure Of :
   {2,2,4,6,4} of size 768
   {3,2,4,6,4} of size 1152
   {5,2,4,6,4} of size 1920
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,4,6,2}*192c
   4-fold quotients : {2,4,3,2}*96
Covers (Minimal Covers in Boldface) :
   2-fold covers : {2,4,12,4}*768d, {2,4,12,4}*768e, {2,4,6,8}*768b, {2,4,6,4}*768b
   3-fold covers : {2,4,18,4}*1152c, {2,4,6,12}*1152d, {2,4,6,12}*1152e
   5-fold covers : {2,4,6,20}*1920b, {2,4,30,4}*1920c
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 5, 6)( 7, 8)(11,12)(13,14);;
s2 := ( 3, 5)( 4, 6)( 9,11)(10,12);;
s3 := ( 5, 7)( 6, 8)( 9,10)(11,14)(12,13);;
s4 := ( 3, 9)( 4,10)( 5,11)( 6,12)( 7,13)( 8,14);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s1*s2*s1*s2*s1*s2*s1*s2, s2*s3*s4*s3*s2*s3*s4*s3, 
s3*s4*s3*s4*s3*s4*s3*s4, s1*s2*s3*s2*s1*s2*s3*s1*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(14)!(1,2);
s1 := Sym(14)!( 5, 6)( 7, 8)(11,12)(13,14);
s2 := Sym(14)!( 3, 5)( 4, 6)( 9,11)(10,12);
s3 := Sym(14)!( 5, 7)( 6, 8)( 9,10)(11,14)(12,13);
s4 := Sym(14)!( 3, 9)( 4,10)( 5,11)( 6,12)( 7,13)( 8,14);
poly := sub<Sym(14)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s3*s4*s3*s2*s3*s4*s3, s3*s4*s3*s4*s3*s4*s3*s4, 
s1*s2*s3*s2*s1*s2*s3*s1*s2, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 

to this polytope