Questions?
See the FAQ
or other info.

Polytope of Type {8,6,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {8,6,2}*384c
if this polytope has a name.
Group : SmallGroup(384,20070)
Rank : 4
Schlafli Type : {8,6,2}
Number of vertices, edges, etc : 16, 48, 12, 2
Order of s0s1s2s3 : 6
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {8,6,2,2} of size 768
   {8,6,2,3} of size 1152
   {8,6,2,5} of size 1920
Vertex Figure Of :
   {2,8,6,2} of size 768
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {4,6,2}*192
   4-fold quotients : {4,3,2}*96, {4,6,2}*96b, {4,6,2}*96c
   8-fold quotients : {4,3,2}*48, {2,6,2}*48
   16-fold quotients : {2,3,2}*24
   24-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   2-fold covers : {8,12,2}*768f, {8,6,2}*768f, {8,12,2}*768g, {8,6,4}*768b
   3-fold covers : {8,18,2}*1152c, {24,6,2}*1152c, {24,6,2}*1152d, {8,6,6}*1152d, {8,6,6}*1152e
   5-fold covers : {40,6,2}*1920b, {8,6,10}*1920b, {8,30,2}*1920c
Permutation Representation (GAP) :
s0 := ( 1,11)( 2,12)( 3,10)( 4, 9)( 5,15)( 6,16)( 7,14)( 8,13);;
s1 := ( 3, 5)( 4, 6)( 7, 8)(11,13)(12,14)(15,16);;
s2 := ( 3, 4)( 5, 7)( 6, 8)( 9,10)(13,16)(14,15);;
s3 := (17,18);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s0*s1*s2*s1*s0*s1*s2*s1*s2*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(18)!( 1,11)( 2,12)( 3,10)( 4, 9)( 5,15)( 6,16)( 7,14)( 8,13);
s1 := Sym(18)!( 3, 5)( 4, 6)( 7, 8)(11,13)(12,14)(15,16);
s2 := Sym(18)!( 3, 4)( 5, 7)( 6, 8)( 9,10)(13,16)(14,15);
s3 := Sym(18)!(17,18);
poly := sub<Sym(18)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s0*s1*s2*s1*s0*s1*s2*s1*s2*s0*s1*s0*s1 >; 
 

to this polytope