Questions?
See the FAQ
or other info.

Polytope of Type {2,4,6,2,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,4,6,2,2}*384a
if this polytope has a name.
Group : SmallGroup(384,20133)
Rank : 6
Schlafli Type : {2,4,6,2,2}
Number of vertices, edges, etc : 2, 4, 12, 6, 2, 2
Order of s0s1s2s3s4s5 : 12
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {2,4,6,2,2,2} of size 768
   {2,4,6,2,2,3} of size 1152
   {2,4,6,2,2,5} of size 1920
Vertex Figure Of :
   {2,2,4,6,2,2} of size 768
   {3,2,4,6,2,2} of size 1152
   {5,2,4,6,2,2} of size 1920
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,2,6,2,2}*192
   3-fold quotients : {2,4,2,2,2}*128
   4-fold quotients : {2,2,3,2,2}*96
   6-fold quotients : {2,2,2,2,2}*64
Covers (Minimal Covers in Boldface) :
   2-fold covers : {4,4,6,2,2}*768, {2,4,12,2,2}*768a, {2,4,6,2,4}*768a, {2,4,6,4,2}*768a, {2,8,6,2,2}*768
   3-fold covers : {2,4,18,2,2}*1152a, {2,4,6,2,6}*1152a, {2,4,6,6,2}*1152a, {2,4,6,6,2}*1152b, {6,4,6,2,2}*1152, {2,12,6,2,2}*1152a, {2,12,6,2,2}*1152b
   5-fold covers : {2,4,30,2,2}*1920a, {2,4,6,2,10}*1920a, {2,4,6,10,2}*1920a, {10,4,6,2,2}*1920, {2,20,6,2,2}*1920a
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4, 7)( 8,11)( 9,12);;
s2 := ( 3, 4)( 5, 9)( 6, 8)( 7,10)(11,14)(12,13);;
s3 := ( 3, 5)( 4, 8)( 7,11)(10,13);;
s4 := (15,16);;
s5 := (17,18);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  s5 := F.6;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5, 
s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s3*s4*s3*s4, s0*s5*s0*s5, 
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5, 
s4*s5*s4*s5, s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s2*s3*s2*s1*s2*s3*s2, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(18)!(1,2);
s1 := Sym(18)!( 4, 7)( 8,11)( 9,12);
s2 := Sym(18)!( 3, 4)( 5, 9)( 6, 8)( 7,10)(11,14)(12,13);
s3 := Sym(18)!( 3, 5)( 4, 8)( 7,11)(10,13);
s4 := Sym(18)!(15,16);
s5 := Sym(18)!(17,18);
poly := sub<Sym(18)|s0,s1,s2,s3,s4,s5>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s5*s5, s0*s1*s0*s1, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4, 
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5, 
s3*s5*s3*s5, s4*s5*s4*s5, s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s2*s3*s2*s1*s2*s3*s2, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 

to this polytope