Questions?
See the FAQ
or other info.

Polytope of Type {2,2,4,6}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,2,4,6}*384
if this polytope has a name.
Group : SmallGroup(384,20162)
Rank : 5
Schlafli Type : {2,2,4,6}
Number of vertices, edges, etc : 2, 2, 8, 24, 12
Order of s0s1s2s3s4 : 6
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {2,2,4,6,2} of size 768
Vertex Figure Of :
   {2,2,2,4,6} of size 768
   {3,2,2,4,6} of size 1152
   {5,2,2,4,6} of size 1920
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,2,4,3}*192, {2,2,4,6}*192b, {2,2,4,6}*192c
   4-fold quotients : {2,2,4,3}*96, {2,2,2,6}*96
   8-fold quotients : {2,2,2,3}*48
   12-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
   2-fold covers : {2,2,4,12}*768b, {2,2,4,6}*768b, {2,2,4,12}*768c, {2,4,4,6}*768d, {4,2,4,6}*768, {2,2,8,6}*768b, {2,2,8,6}*768c
   3-fold covers : {2,2,4,18}*1152, {2,2,12,6}*1152a, {2,2,12,6}*1152b, {2,6,4,6}*1152a, {6,2,4,6}*1152
   5-fold covers : {2,2,20,6}*1920a, {2,10,4,6}*1920, {10,2,4,6}*1920, {2,2,4,30}*1920
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (3,4);;
s2 := ( 5,10)( 6, 8)( 7,14)( 9,11)(12,16)(13,15)(17,20)(18,19);;
s3 := ( 8,12)(10,15)(11,17)(14,19);;
s4 := ( 5, 7)( 6, 9)( 8,11)(10,14)(12,18)(13,17)(15,20)(16,19);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1, 
s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s2*s3*s2*s3*s2*s3*s2*s3, 
s2*s3*s4*s3*s4*s3*s2*s3*s4*s3*s4*s3, 
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(20)!(1,2);
s1 := Sym(20)!(3,4);
s2 := Sym(20)!( 5,10)( 6, 8)( 7,14)( 9,11)(12,16)(13,15)(17,20)(18,19);
s3 := Sym(20)!( 8,12)(10,15)(11,17)(14,19);
s4 := Sym(20)!( 5, 7)( 6, 9)( 8,11)(10,14)(12,18)(13,17)(15,20)(16,19);
poly := sub<Sym(20)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s2*s3*s2*s3*s2*s3*s2*s3, s2*s3*s4*s3*s4*s3*s2*s3*s4*s3*s4*s3, 
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >; 
 

to this polytope