Questions?
See the FAQ
or other info.

Polytope of Type {4,6,2,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,6,2,2}*384
if this polytope has a name.
Group : SmallGroup(384,20162)
Rank : 5
Schlafli Type : {4,6,2,2}
Number of vertices, edges, etc : 8, 24, 12, 2, 2
Order of s0s1s2s3s4 : 6
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {4,6,2,2,2} of size 768
   {4,6,2,2,3} of size 1152
   {4,6,2,2,5} of size 1920
Vertex Figure Of :
   {2,4,6,2,2} of size 768
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {4,3,2,2}*192, {4,6,2,2}*192b, {4,6,2,2}*192c
   4-fold quotients : {4,3,2,2}*96, {2,6,2,2}*96
   8-fold quotients : {2,3,2,2}*48
   12-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
   2-fold covers : {4,12,2,2}*768b, {4,6,2,2}*768b, {4,6,2,4}*768, {4,6,4,2}*768b, {4,12,2,2}*768c, {8,6,2,2}*768b, {8,6,2,2}*768c
   3-fold covers : {4,18,2,2}*1152, {4,6,2,6}*1152, {4,6,6,2}*1152a, {4,6,6,2}*1152b, {12,6,2,2}*1152a, {12,6,2,2}*1152b
   5-fold covers : {4,6,2,10}*1920, {4,6,10,2}*1920a, {20,6,2,2}*1920a, {4,30,2,2}*1920
Permutation Representation (GAP) :
s0 := ( 1, 6)( 2, 4)( 3,10)( 5, 7)( 8,12)( 9,11)(13,16)(14,15);;
s1 := ( 4, 8)( 6,11)( 7,13)(10,15);;
s2 := ( 1, 3)( 2, 5)( 4, 7)( 6,10)( 8,14)( 9,13)(11,16)(12,15);;
s3 := (17,18);;
s4 := (19,20);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s3*s4*s3*s4, s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(20)!( 1, 6)( 2, 4)( 3,10)( 5, 7)( 8,12)( 9,11)(13,16)(14,15);
s1 := Sym(20)!( 4, 8)( 6,11)( 7,13)(10,15);
s2 := Sym(20)!( 1, 3)( 2, 5)( 4, 7)( 6,10)( 8,14)( 9,13)(11,16)(12,15);
s3 := Sym(20)!(17,18);
s4 := Sym(20)!(19,20);
poly := sub<Sym(20)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4, 
s0*s1*s0*s1*s0*s1*s0*s1, s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope