Questions?
See the FAQ
or other info.

Polytope of Type {2,98}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,98}*392
if this polytope has a name.
Group : SmallGroup(392,12)
Rank : 3
Schlafli Type : {2,98}
Number of vertices, edges, etc : 2, 98, 98
Order of s0s1s2 : 98
Order of s0s1s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {2,98,2} of size 784
   {2,98,4} of size 1568
Vertex Figure Of :
   {2,2,98} of size 784
   {3,2,98} of size 1176
   {4,2,98} of size 1568
   {5,2,98} of size 1960
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,49}*196
   7-fold quotients : {2,14}*56
   14-fold quotients : {2,7}*28
   49-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   2-fold covers : {2,196}*784, {4,98}*784
   3-fold covers : {6,98}*1176, {2,294}*1176
   4-fold covers : {4,196}*1568, {2,392}*1568, {8,98}*1568
   5-fold covers : {10,98}*1960, {2,490}*1960
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (  4,  9)(  5,  8)(  6,  7)( 10, 46)( 11, 45)( 12, 51)( 13, 50)( 14, 49)
( 15, 48)( 16, 47)( 17, 39)( 18, 38)( 19, 44)( 20, 43)( 21, 42)( 22, 41)
( 23, 40)( 24, 32)( 25, 31)( 26, 37)( 27, 36)( 28, 35)( 29, 34)( 30, 33)
( 53, 58)( 54, 57)( 55, 56)( 59, 95)( 60, 94)( 61,100)( 62, 99)( 63, 98)
( 64, 97)( 65, 96)( 66, 88)( 67, 87)( 68, 93)( 69, 92)( 70, 91)( 71, 90)
( 72, 89)( 73, 81)( 74, 80)( 75, 86)( 76, 85)( 77, 84)( 78, 83)( 79, 82);;
s2 := (  3, 59)(  4, 65)(  5, 64)(  6, 63)(  7, 62)(  8, 61)(  9, 60)( 10, 52)
( 11, 58)( 12, 57)( 13, 56)( 14, 55)( 15, 54)( 16, 53)( 17, 95)( 18, 94)
( 19,100)( 20, 99)( 21, 98)( 22, 97)( 23, 96)( 24, 88)( 25, 87)( 26, 93)
( 27, 92)( 28, 91)( 29, 90)( 30, 89)( 31, 81)( 32, 80)( 33, 86)( 34, 85)
( 35, 84)( 36, 83)( 37, 82)( 38, 74)( 39, 73)( 40, 79)( 41, 78)( 42, 77)
( 43, 76)( 44, 75)( 45, 67)( 46, 66)( 47, 72)( 48, 71)( 49, 70)( 50, 69)
( 51, 68);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s1*s0*s1, s0*s2*s0*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(100)!(1,2);
s1 := Sym(100)!(  4,  9)(  5,  8)(  6,  7)( 10, 46)( 11, 45)( 12, 51)( 13, 50)
( 14, 49)( 15, 48)( 16, 47)( 17, 39)( 18, 38)( 19, 44)( 20, 43)( 21, 42)
( 22, 41)( 23, 40)( 24, 32)( 25, 31)( 26, 37)( 27, 36)( 28, 35)( 29, 34)
( 30, 33)( 53, 58)( 54, 57)( 55, 56)( 59, 95)( 60, 94)( 61,100)( 62, 99)
( 63, 98)( 64, 97)( 65, 96)( 66, 88)( 67, 87)( 68, 93)( 69, 92)( 70, 91)
( 71, 90)( 72, 89)( 73, 81)( 74, 80)( 75, 86)( 76, 85)( 77, 84)( 78, 83)
( 79, 82);
s2 := Sym(100)!(  3, 59)(  4, 65)(  5, 64)(  6, 63)(  7, 62)(  8, 61)(  9, 60)
( 10, 52)( 11, 58)( 12, 57)( 13, 56)( 14, 55)( 15, 54)( 16, 53)( 17, 95)
( 18, 94)( 19,100)( 20, 99)( 21, 98)( 22, 97)( 23, 96)( 24, 88)( 25, 87)
( 26, 93)( 27, 92)( 28, 91)( 29, 90)( 30, 89)( 31, 81)( 32, 80)( 33, 86)
( 34, 85)( 35, 84)( 36, 83)( 37, 82)( 38, 74)( 39, 73)( 40, 79)( 41, 78)
( 42, 77)( 43, 76)( 44, 75)( 45, 67)( 46, 66)( 47, 72)( 48, 71)( 49, 70)
( 50, 69)( 51, 68);
poly := sub<Sym(100)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s1*s0*s1, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope