Questions?
See the FAQ
or other info.

# Polytope of Type {18,12}

Atlas Canonical Name : {18,12}*432a
Also Known As : {18,12|2}. if this polytope has another name.
Group : SmallGroup(432,292)
Rank : 3
Schlafli Type : {18,12}
Number of vertices, edges, etc : 18, 108, 12
Order of s0s1s2 : 36
Order of s0s1s2s1 : 2
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{18,12,2} of size 864
{18,12,4} of size 1728
{18,12,4} of size 1728
{18,12,4} of size 1728
{18,12,3} of size 1728
Vertex Figure Of :
{2,18,12} of size 864
{4,18,12} of size 1728
{4,18,12} of size 1728
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {18,6}*216a
3-fold quotients : {18,4}*144a, {6,12}*144a
6-fold quotients : {18,2}*72, {6,6}*72a
9-fold quotients : {2,12}*48, {6,4}*48a
12-fold quotients : {9,2}*36
18-fold quotients : {2,6}*24, {6,2}*24
27-fold quotients : {2,4}*16
36-fold quotients : {2,3}*12, {3,2}*12
54-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
2-fold covers : {18,24}*864a, {36,12}*864a
3-fold covers : {18,36}*1296a, {18,12}*1296a, {54,12}*1296a, {18,12}*1296l
4-fold covers : {18,48}*1728a, {36,12}*1728a, {72,12}*1728a, {36,24}*1728c, {72,12}*1728c, {36,24}*1728d, {36,12}*1728c, {18,12}*1728c
Permutation Representation (GAP) :
```s0 := (  2,  3)(  5,  6)(  8,  9)( 10, 20)( 11, 19)( 12, 21)( 13, 23)( 14, 22)
( 15, 24)( 16, 26)( 17, 25)( 18, 27)( 29, 30)( 32, 33)( 35, 36)( 37, 47)
( 38, 46)( 39, 48)( 40, 50)( 41, 49)( 42, 51)( 43, 53)( 44, 52)( 45, 54)
( 56, 57)( 59, 60)( 62, 63)( 64, 74)( 65, 73)( 66, 75)( 67, 77)( 68, 76)
( 69, 78)( 70, 80)( 71, 79)( 72, 81)( 83, 84)( 86, 87)( 89, 90)( 91,101)
( 92,100)( 93,102)( 94,104)( 95,103)( 96,105)( 97,107)( 98,106)( 99,108);;
s1 := (  1, 10)(  2, 12)(  3, 11)(  4, 16)(  5, 18)(  6, 17)(  7, 13)(  8, 15)
(  9, 14)( 19, 20)( 22, 26)( 23, 25)( 24, 27)( 28, 37)( 29, 39)( 30, 38)
( 31, 43)( 32, 45)( 33, 44)( 34, 40)( 35, 42)( 36, 41)( 46, 47)( 49, 53)
( 50, 52)( 51, 54)( 55, 91)( 56, 93)( 57, 92)( 58, 97)( 59, 99)( 60, 98)
( 61, 94)( 62, 96)( 63, 95)( 64, 82)( 65, 84)( 66, 83)( 67, 88)( 68, 90)
( 69, 89)( 70, 85)( 71, 87)( 72, 86)( 73,101)( 74,100)( 75,102)( 76,107)
( 77,106)( 78,108)( 79,104)( 80,103)( 81,105);;
s2 := (  1, 58)(  2, 59)(  3, 60)(  4, 55)(  5, 56)(  6, 57)(  7, 61)(  8, 62)
(  9, 63)( 10, 67)( 11, 68)( 12, 69)( 13, 64)( 14, 65)( 15, 66)( 16, 70)
( 17, 71)( 18, 72)( 19, 76)( 20, 77)( 21, 78)( 22, 73)( 23, 74)( 24, 75)
( 25, 79)( 26, 80)( 27, 81)( 28, 85)( 29, 86)( 30, 87)( 31, 82)( 32, 83)
( 33, 84)( 34, 88)( 35, 89)( 36, 90)( 37, 94)( 38, 95)( 39, 96)( 40, 91)
( 41, 92)( 42, 93)( 43, 97)( 44, 98)( 45, 99)( 46,103)( 47,104)( 48,105)
( 49,100)( 50,101)( 51,102)( 52,106)( 53,107)( 54,108);;
poly := Group([s0,s1,s2]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(108)!(  2,  3)(  5,  6)(  8,  9)( 10, 20)( 11, 19)( 12, 21)( 13, 23)
( 14, 22)( 15, 24)( 16, 26)( 17, 25)( 18, 27)( 29, 30)( 32, 33)( 35, 36)
( 37, 47)( 38, 46)( 39, 48)( 40, 50)( 41, 49)( 42, 51)( 43, 53)( 44, 52)
( 45, 54)( 56, 57)( 59, 60)( 62, 63)( 64, 74)( 65, 73)( 66, 75)( 67, 77)
( 68, 76)( 69, 78)( 70, 80)( 71, 79)( 72, 81)( 83, 84)( 86, 87)( 89, 90)
( 91,101)( 92,100)( 93,102)( 94,104)( 95,103)( 96,105)( 97,107)( 98,106)
( 99,108);
s1 := Sym(108)!(  1, 10)(  2, 12)(  3, 11)(  4, 16)(  5, 18)(  6, 17)(  7, 13)
(  8, 15)(  9, 14)( 19, 20)( 22, 26)( 23, 25)( 24, 27)( 28, 37)( 29, 39)
( 30, 38)( 31, 43)( 32, 45)( 33, 44)( 34, 40)( 35, 42)( 36, 41)( 46, 47)
( 49, 53)( 50, 52)( 51, 54)( 55, 91)( 56, 93)( 57, 92)( 58, 97)( 59, 99)
( 60, 98)( 61, 94)( 62, 96)( 63, 95)( 64, 82)( 65, 84)( 66, 83)( 67, 88)
( 68, 90)( 69, 89)( 70, 85)( 71, 87)( 72, 86)( 73,101)( 74,100)( 75,102)
( 76,107)( 77,106)( 78,108)( 79,104)( 80,103)( 81,105);
s2 := Sym(108)!(  1, 58)(  2, 59)(  3, 60)(  4, 55)(  5, 56)(  6, 57)(  7, 61)
(  8, 62)(  9, 63)( 10, 67)( 11, 68)( 12, 69)( 13, 64)( 14, 65)( 15, 66)
( 16, 70)( 17, 71)( 18, 72)( 19, 76)( 20, 77)( 21, 78)( 22, 73)( 23, 74)
( 24, 75)( 25, 79)( 26, 80)( 27, 81)( 28, 85)( 29, 86)( 30, 87)( 31, 82)
( 32, 83)( 33, 84)( 34, 88)( 35, 89)( 36, 90)( 37, 94)( 38, 95)( 39, 96)
( 40, 91)( 41, 92)( 42, 93)( 43, 97)( 44, 98)( 45, 99)( 46,103)( 47,104)
( 48,105)( 49,100)( 50,101)( 51,102)( 52,106)( 53,107)( 54,108);
poly := sub<Sym(108)|s0,s1,s2>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;

```
References : None.
to this polytope