Questions?
See the FAQ
or other info.

Polytope of Type {4,6,3}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,6,3}*432a
Also Known As : {{4,6|2},{6,3}6}. if this polytope has another name.
Group : SmallGroup(432,324)
Rank : 4
Schlafli Type : {4,6,3}
Number of vertices, edges, etc : 4, 36, 27, 9
Order of s0s1s2s3 : 12
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {4,6,3,2} of size 864
   {4,6,3,4} of size 1728
Vertex Figure Of :
   {2,4,6,3} of size 864
   {4,4,6,3} of size 1728
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,6,3}*216
   3-fold quotients : {4,6,3}*144
   6-fold quotients : {2,6,3}*72
   9-fold quotients : {4,2,3}*48
   18-fold quotients : {2,2,3}*24
Covers (Minimal Covers in Boldface) :
   2-fold covers : {8,6,3}*864a, {4,6,6}*864c
   3-fold covers : {4,6,9}*1296a, {4,6,9}*1296b, {4,6,9}*1296c, {4,6,9}*1296d, {4,6,3}*1296a, {4,18,3}*1296, {12,6,3}*1296e
   4-fold covers : {16,6,3}*1728a, {4,6,12}*1728b, {8,6,6}*1728c, {4,12,6}*1728c, {4,6,3}*1728a, {4,12,3}*1728a
Permutation Representation (GAP) :
s0 := (  1, 55)(  2, 56)(  3, 57)(  4, 58)(  5, 59)(  6, 60)(  7, 61)(  8, 62)
(  9, 63)( 10, 64)( 11, 65)( 12, 66)( 13, 67)( 14, 68)( 15, 69)( 16, 70)
( 17, 71)( 18, 72)( 19, 73)( 20, 74)( 21, 75)( 22, 76)( 23, 77)( 24, 78)
( 25, 79)( 26, 80)( 27, 81)( 28, 82)( 29, 83)( 30, 84)( 31, 85)( 32, 86)
( 33, 87)( 34, 88)( 35, 89)( 36, 90)( 37, 91)( 38, 92)( 39, 93)( 40, 94)
( 41, 95)( 42, 96)( 43, 97)( 44, 98)( 45, 99)( 46,100)( 47,101)( 48,102)
( 49,103)( 50,104)( 51,105)( 52,106)( 53,107)( 54,108);;
s1 := (  2,  3)(  4,  7)(  5,  9)(  6,  8)( 11, 12)( 13, 16)( 14, 18)( 15, 17)
( 20, 21)( 22, 25)( 23, 27)( 24, 26)( 29, 30)( 31, 34)( 32, 36)( 33, 35)
( 38, 39)( 40, 43)( 41, 45)( 42, 44)( 47, 48)( 49, 52)( 50, 54)( 51, 53)
( 55, 82)( 56, 84)( 57, 83)( 58, 88)( 59, 90)( 60, 89)( 61, 85)( 62, 87)
( 63, 86)( 64, 91)( 65, 93)( 66, 92)( 67, 97)( 68, 99)( 69, 98)( 70, 94)
( 71, 96)( 72, 95)( 73,100)( 74,102)( 75,101)( 76,106)( 77,108)( 78,107)
( 79,103)( 80,105)( 81,104);;
s2 := (  1,  4)(  2,  5)(  3,  6)( 10, 22)( 11, 23)( 12, 24)( 13, 19)( 14, 20)
( 15, 21)( 16, 25)( 17, 26)( 18, 27)( 28, 31)( 29, 32)( 30, 33)( 37, 49)
( 38, 50)( 39, 51)( 40, 46)( 41, 47)( 42, 48)( 43, 52)( 44, 53)( 45, 54)
( 55, 58)( 56, 59)( 57, 60)( 64, 76)( 65, 77)( 66, 78)( 67, 73)( 68, 74)
( 69, 75)( 70, 79)( 71, 80)( 72, 81)( 82, 85)( 83, 86)( 84, 87)( 91,103)
( 92,104)( 93,105)( 94,100)( 95,101)( 96,102)( 97,106)( 98,107)( 99,108);;
s3 := (  1, 10)(  2, 11)(  3, 12)(  4, 18)(  5, 16)(  6, 17)(  7, 14)(  8, 15)
(  9, 13)( 22, 27)( 23, 25)( 24, 26)( 28, 37)( 29, 38)( 30, 39)( 31, 45)
( 32, 43)( 33, 44)( 34, 41)( 35, 42)( 36, 40)( 49, 54)( 50, 52)( 51, 53)
( 55, 64)( 56, 65)( 57, 66)( 58, 72)( 59, 70)( 60, 71)( 61, 68)( 62, 69)
( 63, 67)( 76, 81)( 77, 79)( 78, 80)( 82, 91)( 83, 92)( 84, 93)( 85, 99)
( 86, 97)( 87, 98)( 88, 95)( 89, 96)( 90, 94)(103,108)(104,106)(105,107);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3*s2*s3, 
s0*s1*s0*s1*s0*s1*s0*s1, s0*s1*s2*s1*s0*s1*s2*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s3*s2*s1*s3*s2*s1*s3*s2*s1*s3*s2*s1*s3*s2*s1*s3*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(108)!(  1, 55)(  2, 56)(  3, 57)(  4, 58)(  5, 59)(  6, 60)(  7, 61)
(  8, 62)(  9, 63)( 10, 64)( 11, 65)( 12, 66)( 13, 67)( 14, 68)( 15, 69)
( 16, 70)( 17, 71)( 18, 72)( 19, 73)( 20, 74)( 21, 75)( 22, 76)( 23, 77)
( 24, 78)( 25, 79)( 26, 80)( 27, 81)( 28, 82)( 29, 83)( 30, 84)( 31, 85)
( 32, 86)( 33, 87)( 34, 88)( 35, 89)( 36, 90)( 37, 91)( 38, 92)( 39, 93)
( 40, 94)( 41, 95)( 42, 96)( 43, 97)( 44, 98)( 45, 99)( 46,100)( 47,101)
( 48,102)( 49,103)( 50,104)( 51,105)( 52,106)( 53,107)( 54,108);
s1 := Sym(108)!(  2,  3)(  4,  7)(  5,  9)(  6,  8)( 11, 12)( 13, 16)( 14, 18)
( 15, 17)( 20, 21)( 22, 25)( 23, 27)( 24, 26)( 29, 30)( 31, 34)( 32, 36)
( 33, 35)( 38, 39)( 40, 43)( 41, 45)( 42, 44)( 47, 48)( 49, 52)( 50, 54)
( 51, 53)( 55, 82)( 56, 84)( 57, 83)( 58, 88)( 59, 90)( 60, 89)( 61, 85)
( 62, 87)( 63, 86)( 64, 91)( 65, 93)( 66, 92)( 67, 97)( 68, 99)( 69, 98)
( 70, 94)( 71, 96)( 72, 95)( 73,100)( 74,102)( 75,101)( 76,106)( 77,108)
( 78,107)( 79,103)( 80,105)( 81,104);
s2 := Sym(108)!(  1,  4)(  2,  5)(  3,  6)( 10, 22)( 11, 23)( 12, 24)( 13, 19)
( 14, 20)( 15, 21)( 16, 25)( 17, 26)( 18, 27)( 28, 31)( 29, 32)( 30, 33)
( 37, 49)( 38, 50)( 39, 51)( 40, 46)( 41, 47)( 42, 48)( 43, 52)( 44, 53)
( 45, 54)( 55, 58)( 56, 59)( 57, 60)( 64, 76)( 65, 77)( 66, 78)( 67, 73)
( 68, 74)( 69, 75)( 70, 79)( 71, 80)( 72, 81)( 82, 85)( 83, 86)( 84, 87)
( 91,103)( 92,104)( 93,105)( 94,100)( 95,101)( 96,102)( 97,106)( 98,107)
( 99,108);
s3 := Sym(108)!(  1, 10)(  2, 11)(  3, 12)(  4, 18)(  5, 16)(  6, 17)(  7, 14)
(  8, 15)(  9, 13)( 22, 27)( 23, 25)( 24, 26)( 28, 37)( 29, 38)( 30, 39)
( 31, 45)( 32, 43)( 33, 44)( 34, 41)( 35, 42)( 36, 40)( 49, 54)( 50, 52)
( 51, 53)( 55, 64)( 56, 65)( 57, 66)( 58, 72)( 59, 70)( 60, 71)( 61, 68)
( 62, 69)( 63, 67)( 76, 81)( 77, 79)( 78, 80)( 82, 91)( 83, 92)( 84, 93)
( 85, 99)( 86, 97)( 87, 98)( 88, 95)( 89, 96)( 90, 94)(103,108)(104,106)
(105,107);
poly := sub<Sym(108)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s3*s2*s1*s3*s2*s1*s3*s2*s1*s3*s2*s1*s3*s2*s1*s3*s2 >; 
 
References : None.
to this polytope