Questions?
See the FAQ
or other info.

# Polytope of Type {12,6}

Atlas Canonical Name : {12,6}*432d
Also Known As : {12,6}3if this polytope has another name.
Group : SmallGroup(432,523)
Rank : 3
Schlafli Type : {12,6}
Number of vertices, edges, etc : 36, 108, 18
Order of s0s1s2 : 3
Order of s0s1s2s1 : 12
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Non-Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
{12,6,2} of size 864
{12,6,4} of size 1728
Vertex Figure Of :
{2,12,6} of size 864
{4,12,6} of size 1728
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {12,6}*144d
4-fold quotients : {6,6}*108
9-fold quotients : {4,6}*48b
18-fold quotients : {4,3}*24
Covers (Minimal Covers in Boldface) :
2-fold covers : {12,6}*864b
3-fold covers : {36,6}*1296i, {36,6}*1296j, {36,6}*1296k, {12,18}*1296i, {12,18}*1296j, {12,6}*1296e, {12,18}*1296k, {12,6}*1296f
4-fold covers : {24,6}*1728a, {12,12}*1728l, {12,6}*1728b, {24,6}*1728c, {24,6}*1728e, {12,12}*1728p, {12,12}*1728u
Permutation Representation (GAP) :
```s0 := ( 1, 3)( 2, 4)( 5,11)( 6,12)( 7, 9)( 8,10)(13,27)(14,28)(15,25)(16,26)
(17,35)(18,36)(19,33)(20,34)(21,31)(22,32)(23,29)(24,30);;
s1 := ( 1,13)( 2,15)( 3,14)( 4,16)( 5,17)( 6,19)( 7,18)( 8,20)( 9,21)(10,23)
(11,22)(12,24)(26,27)(30,31)(34,35);;
s2 := ( 2, 4)( 5, 9)( 6,12)( 7,11)( 8,10)(13,21)(14,24)(15,23)(16,22)(18,20)
(25,29)(26,32)(27,31)(28,30)(34,36);;
poly := Group([s0,s1,s2]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s0*s1*s2*s0*s1*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(36)!( 1, 3)( 2, 4)( 5,11)( 6,12)( 7, 9)( 8,10)(13,27)(14,28)(15,25)
(16,26)(17,35)(18,36)(19,33)(20,34)(21,31)(22,32)(23,29)(24,30);
s1 := Sym(36)!( 1,13)( 2,15)( 3,14)( 4,16)( 5,17)( 6,19)( 7,18)( 8,20)( 9,21)
(10,23)(11,22)(12,24)(26,27)(30,31)(34,35);
s2 := Sym(36)!( 2, 4)( 5, 9)( 6,12)( 7,11)( 8,10)(13,21)(14,24)(15,23)(16,22)
(18,20)(25,29)(26,32)(27,31)(28,30)(34,36);
poly := sub<Sym(36)|s0,s1,s2>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s2*s0*s1*s2*s0*s1*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;

```
References : None.
to this polytope