Questions?
See the FAQ
or other info.

# Polytope of Type {3,12}

Atlas Canonical Name : {3,12}*432
Also Known As : {3,12}6if this polytope has another name.
Group : SmallGroup(432,523)
Rank : 3
Schlafli Type : {3,12}
Number of vertices, edges, etc : 18, 108, 72
Order of s0s1s2 : 6
Order of s0s1s2s1 : 12
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
{3,12,2} of size 864
{3,12,4} of size 1728
Vertex Figure Of :
{2,3,12} of size 864
{4,3,12} of size 1728
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {3,12}*144
4-fold quotients : {3,6}*108
9-fold quotients : {3,4}*48
12-fold quotients : {3,6}*36
18-fold quotients : {3,4}*24
36-fold quotients : {3,2}*12
Covers (Minimal Covers in Boldface) :
2-fold covers : {3,24}*864, {6,12}*864a
3-fold covers : {3,36}*1296, {3,12}*1296a, {9,12}*1296a, {9,12}*1296b, {9,12}*1296c, {9,12}*1296d
4-fold covers : {3,24}*1728, {12,12}*1728i, {12,12}*1728m, {6,24}*1728b, {6,24}*1728d, {6,12}*1728f, {3,12}*1728
Permutation Representation (GAP) :
```s0 := ( 2, 3)( 6, 7)(10,11)(13,25)(14,27)(15,26)(16,28)(17,29)(18,31)(19,30)
(20,32)(21,33)(22,35)(23,34)(24,36);;
s1 := ( 1,17)( 2,20)( 3,19)( 4,18)( 5,21)( 6,24)( 7,23)( 8,22)( 9,13)(10,16)
(11,15)(12,14)(26,28)(30,32)(34,36);;
s2 := ( 1, 4)( 2, 3)( 5,12)( 6,11)( 7,10)( 8, 9)(13,28)(14,27)(15,26)(16,25)
(17,36)(18,35)(19,34)(20,33)(21,32)(22,31)(23,30)(24,29);;
poly := Group([s0,s1,s2]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(36)!( 2, 3)( 6, 7)(10,11)(13,25)(14,27)(15,26)(16,28)(17,29)(18,31)
(19,30)(20,32)(21,33)(22,35)(23,34)(24,36);
s1 := Sym(36)!( 1,17)( 2,20)( 3,19)( 4,18)( 5,21)( 6,24)( 7,23)( 8,22)( 9,13)
(10,16)(11,15)(12,14)(26,28)(30,32)(34,36);
s2 := Sym(36)!( 1, 4)( 2, 3)( 5,12)( 6,11)( 7,10)( 8, 9)(13,28)(14,27)(15,26)
(16,25)(17,36)(18,35)(19,34)(20,33)(21,32)(22,31)(23,30)(24,29);
poly := sub<Sym(36)|s0,s1,s2>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1, s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;

```
References : None.
to this polytope