Questions?
See the FAQ
or other info.

Polytope of Type {6,18,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,18,2}*432b
if this polytope has a name.
Group : SmallGroup(432,544)
Rank : 4
Schlafli Type : {6,18,2}
Number of vertices, edges, etc : 6, 54, 18, 2
Order of s0s1s2s3 : 18
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {6,18,2,2} of size 864
   {6,18,2,3} of size 1296
   {6,18,2,4} of size 1728
Vertex Figure Of :
   {2,6,18,2} of size 864
   {3,6,18,2} of size 1296
   {4,6,18,2} of size 1728
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {6,9,2}*216
   3-fold quotients : {2,18,2}*144, {6,6,2}*144b
   6-fold quotients : {2,9,2}*72, {6,3,2}*72
   9-fold quotients : {2,6,2}*48
   18-fold quotients : {2,3,2}*24
   27-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   2-fold covers : {6,36,2}*864b, {6,18,4}*864b, {12,18,2}*864b
   3-fold covers : {18,18,2}*1296b, {6,18,2}*1296a, {6,54,2}*1296b, {6,18,6}*1296b, {6,18,6}*1296d, {6,18,2}*1296i
   4-fold covers : {6,36,4}*1728b, {6,72,2}*1728b, {6,18,8}*1728b, {12,36,2}*1728b, {24,18,2}*1728b, {12,18,4}*1728b, {6,18,2}*1728, {6,18,4}*1728b, {12,18,2}*1728b
Permutation Representation (GAP) :
s0 := ( 4, 7)( 5, 8)( 6, 9)(13,16)(14,17)(15,18)(22,25)(23,26)(24,27)(31,34)
(32,35)(33,36)(40,43)(41,44)(42,45)(49,52)(50,53)(51,54);;
s1 := ( 1, 4)( 2, 6)( 3, 5)( 8, 9)(10,23)(11,22)(12,24)(13,20)(14,19)(15,21)
(16,26)(17,25)(18,27)(28,31)(29,33)(30,32)(35,36)(37,50)(38,49)(39,51)(40,47)
(41,46)(42,48)(43,53)(44,52)(45,54);;
s2 := ( 1,37)( 2,39)( 3,38)( 4,43)( 5,45)( 6,44)( 7,40)( 8,42)( 9,41)(10,28)
(11,30)(12,29)(13,34)(14,36)(15,35)(16,31)(17,33)(18,32)(19,47)(20,46)(21,48)
(22,53)(23,52)(24,54)(25,50)(26,49)(27,51);;
s3 := (55,56);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s2*s0*s1*s0*s1*s2*s0*s1*s0*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(56)!( 4, 7)( 5, 8)( 6, 9)(13,16)(14,17)(15,18)(22,25)(23,26)(24,27)
(31,34)(32,35)(33,36)(40,43)(41,44)(42,45)(49,52)(50,53)(51,54);
s1 := Sym(56)!( 1, 4)( 2, 6)( 3, 5)( 8, 9)(10,23)(11,22)(12,24)(13,20)(14,19)
(15,21)(16,26)(17,25)(18,27)(28,31)(29,33)(30,32)(35,36)(37,50)(38,49)(39,51)
(40,47)(41,46)(42,48)(43,53)(44,52)(45,54);
s2 := Sym(56)!( 1,37)( 2,39)( 3,38)( 4,43)( 5,45)( 6,44)( 7,40)( 8,42)( 9,41)
(10,28)(11,30)(12,29)(13,34)(14,36)(15,35)(16,31)(17,33)(18,32)(19,47)(20,46)
(21,48)(22,53)(23,52)(24,54)(25,50)(26,49)(27,51);
s3 := Sym(56)!(55,56);
poly := sub<Sym(56)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s2*s0*s1*s0*s1*s2*s0*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope