Questions?
See the FAQ
or other info.

Polytope of Type {3,2,3,2,6}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,2,3,2,6}*432
if this polytope has a name.
Group : SmallGroup(432,759)
Rank : 6
Schlafli Type : {3,2,3,2,6}
Number of vertices, edges, etc : 3, 3, 3, 3, 6, 6
Order of s0s1s2s3s4s5 : 6
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {3,2,3,2,6,2} of size 864
   {3,2,3,2,6,3} of size 1296
   {3,2,3,2,6,4} of size 1728
   {3,2,3,2,6,3} of size 1728
   {3,2,3,2,6,4} of size 1728
   {3,2,3,2,6,4} of size 1728
Vertex Figure Of :
   {2,3,2,3,2,6} of size 864
   {3,3,2,3,2,6} of size 1728
   {4,3,2,3,2,6} of size 1728
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {3,2,3,2,3}*216
   3-fold quotients : {3,2,3,2,2}*144
Covers (Minimal Covers in Boldface) :
   2-fold covers : {3,2,3,2,12}*864, {3,2,6,2,6}*864, {6,2,3,2,6}*864
   3-fold covers : {3,2,3,2,18}*1296, {3,2,9,2,6}*1296, {9,2,3,2,6}*1296, {3,2,3,6,6}*1296a, {3,6,3,2,6}*1296, {3,2,3,6,6}*1296b
   4-fold covers : {3,2,3,2,24}*1728, {3,2,6,2,12}*1728, {3,2,12,2,6}*1728, {6,2,3,2,12}*1728, {12,2,3,2,6}*1728, {3,2,6,4,6}*1728, {3,2,3,4,6}*1728, {6,2,6,2,6}*1728
Permutation Representation (GAP) :
s0 := (2,3);;
s1 := (1,2);;
s2 := (5,6);;
s3 := (4,5);;
s4 := ( 9,10)(11,12);;
s5 := ( 7,11)( 8, 9)(10,12);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  s5 := F.6;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5, 
s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s3*s4*s3*s4, s0*s5*s0*s5, 
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5, 
s0*s1*s0*s1*s0*s1, s2*s3*s2*s3*s2*s3, 
s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(12)!(2,3);
s1 := Sym(12)!(1,2);
s2 := Sym(12)!(5,6);
s3 := Sym(12)!(4,5);
s4 := Sym(12)!( 9,10)(11,12);
s5 := Sym(12)!( 7,11)( 8, 9)(10,12);
poly := sub<Sym(12)|s0,s1,s2,s3,s4,s5>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s5*s5, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4, 
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5, 
s3*s5*s3*s5, s0*s1*s0*s1*s0*s1, s2*s3*s2*s3*s2*s3, 
s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5 >; 
 

to this polytope