Questions?
See the FAQ
or other info.

Polytope of Type {10,6,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {10,6,4}*480a
Also Known As : {{10,6|2},{6,4|2}}. if this polytope has another name.
Group : SmallGroup(480,1097)
Rank : 4
Schlafli Type : {10,6,4}
Number of vertices, edges, etc : 10, 30, 12, 4
Order of s0s1s2s3 : 60
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {10,6,4,2} of size 960
   {10,6,4,4} of size 1920
Vertex Figure Of :
   {2,10,6,4} of size 960
   {4,10,6,4} of size 1920
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {10,6,2}*240
   3-fold quotients : {10,2,4}*160
   5-fold quotients : {2,6,4}*96a
   6-fold quotients : {5,2,4}*80, {10,2,2}*80
   10-fold quotients : {2,6,2}*48
   12-fold quotients : {5,2,2}*40
   15-fold quotients : {2,2,4}*32
   20-fold quotients : {2,3,2}*24
   30-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   2-fold covers : {10,12,4}*960a, {20,6,4}*960a, {10,6,8}*960
   3-fold covers : {10,18,4}*1440a, {10,6,12}*1440a, {10,6,12}*1440c, {30,6,4}*1440a, {30,6,4}*1440b
   4-fold covers : {20,12,4}*1920a, {10,12,8}*1920a, {10,24,4}*1920a, {10,12,8}*1920b, {10,24,4}*1920b, {10,12,4}*1920a, {20,6,8}*1920, {40,6,4}*1920a, {10,6,16}*1920, {10,6,4}*1920b, {20,6,4}*1920b
Permutation Representation (GAP) :
s0 := ( 2, 5)( 3, 4)( 7,10)( 8, 9)(12,15)(13,14)(17,20)(18,19)(22,25)(23,24)
(27,30)(28,29)(32,35)(33,34)(37,40)(38,39)(42,45)(43,44)(47,50)(48,49)(52,55)
(53,54)(57,60)(58,59);;
s1 := ( 1, 2)( 3, 5)( 6,12)( 7,11)( 8,15)( 9,14)(10,13)(16,17)(18,20)(21,27)
(22,26)(23,30)(24,29)(25,28)(31,32)(33,35)(36,42)(37,41)(38,45)(39,44)(40,43)
(46,47)(48,50)(51,57)(52,56)(53,60)(54,59)(55,58);;
s2 := ( 1, 6)( 2, 7)( 3, 8)( 4, 9)( 5,10)(16,21)(17,22)(18,23)(19,24)(20,25)
(31,51)(32,52)(33,53)(34,54)(35,55)(36,46)(37,47)(38,48)(39,49)(40,50)(41,56)
(42,57)(43,58)(44,59)(45,60);;
s3 := ( 1,31)( 2,32)( 3,33)( 4,34)( 5,35)( 6,36)( 7,37)( 8,38)( 9,39)(10,40)
(11,41)(12,42)(13,43)(14,44)(15,45)(16,46)(17,47)(18,48)(19,49)(20,50)(21,51)
(22,52)(23,53)(24,54)(25,55)(26,56)(27,57)(28,58)(29,59)(30,60);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s2*s1*s0*s1*s2*s1, 
s1*s2*s3*s2*s1*s2*s3*s2, s2*s3*s2*s3*s2*s3*s2*s3, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(60)!( 2, 5)( 3, 4)( 7,10)( 8, 9)(12,15)(13,14)(17,20)(18,19)(22,25)
(23,24)(27,30)(28,29)(32,35)(33,34)(37,40)(38,39)(42,45)(43,44)(47,50)(48,49)
(52,55)(53,54)(57,60)(58,59);
s1 := Sym(60)!( 1, 2)( 3, 5)( 6,12)( 7,11)( 8,15)( 9,14)(10,13)(16,17)(18,20)
(21,27)(22,26)(23,30)(24,29)(25,28)(31,32)(33,35)(36,42)(37,41)(38,45)(39,44)
(40,43)(46,47)(48,50)(51,57)(52,56)(53,60)(54,59)(55,58);
s2 := Sym(60)!( 1, 6)( 2, 7)( 3, 8)( 4, 9)( 5,10)(16,21)(17,22)(18,23)(19,24)
(20,25)(31,51)(32,52)(33,53)(34,54)(35,55)(36,46)(37,47)(38,48)(39,49)(40,50)
(41,56)(42,57)(43,58)(44,59)(45,60);
s3 := Sym(60)!( 1,31)( 2,32)( 3,33)( 4,34)( 5,35)( 6,36)( 7,37)( 8,38)( 9,39)
(10,40)(11,41)(12,42)(13,43)(14,44)(15,45)(16,46)(17,47)(18,48)(19,49)(20,50)
(21,51)(22,52)(23,53)(24,54)(25,55)(26,56)(27,57)(28,58)(29,59)(30,60);
poly := sub<Sym(60)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s3*s2*s1*s2*s3*s2, 
s2*s3*s2*s3*s2*s3*s2*s3, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope