Questions?
See the FAQ
or other info.

# Polytope of Type {3,5,2,2,2}

Atlas Canonical Name : {3,5,2,2,2}*480
if this polytope has a name.
Group : SmallGroup(480,1187)
Rank : 6
Schlafli Type : {3,5,2,2,2}
Number of vertices, edges, etc : 6, 15, 10, 2, 2, 2
Order of s0s1s2s3s4s5 : 10
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{3,5,2,2,2,2} of size 960
{3,5,2,2,2,3} of size 1440
{3,5,2,2,2,4} of size 1920
Vertex Figure Of :
{2,3,5,2,2,2} of size 960
Quotients (Maximal Quotients in Boldface) :
No Regular Quotients.
Covers (Minimal Covers in Boldface) :
2-fold covers : {3,5,2,2,4}*960, {3,5,2,4,2}*960, {3,5,2,2,2}*960, {3,10,2,2,2}*960a, {3,10,2,2,2}*960b, {6,5,2,2,2}*960b, {6,5,2,2,2}*960c
3-fold covers : {3,5,2,2,6}*1440, {3,5,2,6,2}*1440
4-fold covers : {3,5,2,4,4}*1920, {3,5,2,2,8}*1920, {3,5,2,8,2}*1920, {3,5,2,2,4}*1920, {3,5,2,4,2}*1920, {3,10,2,2,4}*1920a, {3,10,2,2,4}*1920b, {3,10,2,4,2}*1920a, {3,10,2,4,2}*1920b, {3,10,4,2,2}*1920, {6,5,2,2,4}*1920b, {6,5,2,2,4}*1920c, {6,5,2,4,2}*1920b, {6,5,2,4,2}*1920c, {3,10,2,2,2}*1920, {6,5,2,2,2}*1920b, {6,10,2,2,2}*1920c, {6,10,2,2,2}*1920d, {6,10,2,2,2}*1920e, {6,10,2,2,2}*1920f
Permutation Representation (GAP) :
```s0 := (2,3)(4,5);;
s1 := (1,2)(4,5);;
s2 := (2,4)(3,5);;
s3 := (6,7);;
s4 := (8,9);;
s5 := (10,11);;
poly := Group([s0,s1,s2,s3,s4,s5]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  s5 := F.6;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s3*s4*s3*s4, s0*s5*s0*s5,
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5,
s4*s5*s4*s5, s0*s1*s0*s1*s0*s1, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s1*s0*s1*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s2 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(11)!(2,3)(4,5);
s1 := Sym(11)!(1,2)(4,5);
s2 := Sym(11)!(2,4)(3,5);
s3 := Sym(11)!(6,7);
s4 := Sym(11)!(8,9);
s5 := Sym(11)!(10,11);
poly := sub<Sym(11)|s0,s1,s2,s3,s4,s5>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5,
s3*s5*s3*s5, s4*s5*s4*s5, s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, s1*s0*s1*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s2 >;

```

to this polytope