Questions?
See the FAQ
or other info.

# Polytope of Type {6,5,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,5,2}*480b
if this polytope has a name.
Group : SmallGroup(480,1187)
Rank : 4
Schlafli Type : {6,5,2}
Number of vertices, edges, etc : 24, 60, 20, 2
Order of s0s1s2s3 : 10
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{6,5,2,2} of size 960
{6,5,2,3} of size 1440
{6,5,2,4} of size 1920
Vertex Figure Of :
{2,6,5,2} of size 960
{4,6,5,2} of size 1920
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {3,5,2}*240, {6,5,2}*240b, {6,5,2}*240c
4-fold quotients : {3,5,2}*120
Covers (Minimal Covers in Boldface) :
2-fold covers : {12,5,2}*960, {6,10,2}*960c
3-fold covers : {6,15,2}*1440c, {6,15,2}*1440d
4-fold covers : {6,10,4}*1920c, {6,20,2}*1920c, {12,10,2}*1920c, {6,20,2}*1920e, {12,10,2}*1920e, {6,10,2}*1920b
Permutation Representation (GAP) :
```s0 := (2,3)(4,5)(6,7)(8,9);;
s1 := (1,2)(4,5)(6,8)(7,9);;
s2 := (2,4)(3,5)(6,8)(7,9);;
s3 := (10,11);;
poly := Group([s0,s1,s2,s3]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(11)!(2,3)(4,5)(6,7)(8,9);
s1 := Sym(11)!(1,2)(4,5)(6,8)(7,9);
s2 := Sym(11)!(2,4)(3,5)(6,8)(7,9);
s3 := Sym(11)!(10,11);
poly := sub<Sym(11)|s0,s1,s2,s3>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1 >;

```

to this polytope