Questions?
See the FAQ
or other info.

# Polytope of Type {10,6,2}

Atlas Canonical Name : {10,6,2}*480f
if this polytope has a name.
Group : SmallGroup(480,1187)
Rank : 4
Schlafli Type : {10,6,2}
Number of vertices, edges, etc : 20, 60, 12, 2
Order of s0s1s2s3 : 10
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{10,6,2,2} of size 960
{10,6,2,3} of size 1440
{10,6,2,4} of size 1920
Vertex Figure Of :
{2,10,6,2} of size 960
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {5,6,2}*240b, {10,3,2}*240b
4-fold quotients : {5,3,2}*120
Covers (Minimal Covers in Boldface) :
2-fold covers : {10,6,2}*960c
3-fold covers : {10,6,2}*1440c, {30,6,2}*1440b
4-fold covers : {10,6,4}*1920d, {10,12,2}*1920c, {20,6,2}*1920c, {10,12,2}*1920e, {20,6,2}*1920e, {10,6,2}*1920b
Permutation Representation (GAP) :
```s0 := (2,3)(4,5)(6,7)(8,9);;
s1 := (1,2)(3,4)(6,8)(7,9);;
s2 := (2,5)(3,4)(6,9)(7,8);;
s3 := (10,11);;
poly := Group([s0,s1,s2,s3]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s0*s1*s2*s1*s0*s1*s2*s0*s1*s0*s1*s2*s1 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(11)!(2,3)(4,5)(6,7)(8,9);
s1 := Sym(11)!(1,2)(3,4)(6,8)(7,9);
s2 := Sym(11)!(2,5)(3,4)(6,9)(7,8);
s3 := Sym(11)!(10,11);
poly := sub<Sym(11)|s0,s1,s2,s3>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s0*s1*s2*s1*s0*s1*s2*s0*s1*s0*s1*s2*s1 >;

```

to this polytope