Questions?
See the FAQ
or other info.

Polytope of Type {2,10,6,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,10,6,2}*480
if this polytope has a name.
Group : SmallGroup(480,1207)
Rank : 5
Schlafli Type : {2,10,6,2}
Number of vertices, edges, etc : 2, 10, 30, 6, 2
Order of s0s1s2s3s4 : 30
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {2,10,6,2,2} of size 960
   {2,10,6,2,3} of size 1440
   {2,10,6,2,4} of size 1920
Vertex Figure Of :
   {2,2,10,6,2} of size 960
   {3,2,10,6,2} of size 1440
   {4,2,10,6,2} of size 1920
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {2,10,2,2}*160
   5-fold quotients : {2,2,6,2}*96
   6-fold quotients : {2,5,2,2}*80
   10-fold quotients : {2,2,3,2}*48
   15-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
   2-fold covers : {2,10,12,2}*960, {2,20,6,2}*960a, {2,10,6,4}*960a, {4,10,6,2}*960
   3-fold covers : {2,10,18,2}*1440, {2,10,6,6}*1440a, {2,10,6,6}*1440c, {2,30,6,2}*1440a, {6,10,6,2}*1440, {2,30,6,2}*1440b
   4-fold covers : {2,10,12,4}*1920a, {4,20,6,2}*1920, {2,20,12,2}*1920, {4,10,6,4}*1920a, {4,10,12,2}*1920, {2,20,6,4}*1920a, {2,10,6,8}*1920, {8,10,6,2}*1920, {2,10,24,2}*1920, {2,40,6,2}*1920, {2,10,6,4}*1920a, {2,20,6,2}*1920a
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 7, 8)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)
(29,30)(31,32);;
s2 := ( 3, 7)( 4,11)( 5,15)( 6,13)( 8,17)( 9,21)(10,19)(12,23)(14,27)(16,25)
(20,31)(22,29)(26,28)(30,32);;
s3 := ( 3, 9)( 4, 5)( 6,10)( 7,19)( 8,20)(11,13)(12,14)(15,21)(16,22)(17,29)
(18,30)(23,25)(24,26)(27,31)(28,32);;
s4 := (33,34);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s3*s4*s3*s4, s1*s2*s3*s2*s1*s2*s3*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(34)!(1,2);
s1 := Sym(34)!( 7, 8)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)
(27,28)(29,30)(31,32);
s2 := Sym(34)!( 3, 7)( 4,11)( 5,15)( 6,13)( 8,17)( 9,21)(10,19)(12,23)(14,27)
(16,25)(20,31)(22,29)(26,28)(30,32);
s3 := Sym(34)!( 3, 9)( 4, 5)( 6,10)( 7,19)( 8,20)(11,13)(12,14)(15,21)(16,22)
(17,29)(18,30)(23,25)(24,26)(27,31)(28,32);
s4 := Sym(34)!(33,34);
poly := sub<Sym(34)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4, 
s1*s2*s3*s2*s1*s2*s3*s2, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope