Questions?
See the FAQ
or other info.

Polytope of Type {2,2,30,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,2,30,2}*480
if this polytope has a name.
Group : SmallGroup(480,1212)
Rank : 5
Schlafli Type : {2,2,30,2}
Number of vertices, edges, etc : 2, 2, 30, 30, 2
Order of s0s1s2s3s4 : 30
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {2,2,30,2,2} of size 960
   {2,2,30,2,3} of size 1440
   {2,2,30,2,4} of size 1920
Vertex Figure Of :
   {2,2,2,30,2} of size 960
   {3,2,2,30,2} of size 1440
   {4,2,2,30,2} of size 1920
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,2,15,2}*240
   3-fold quotients : {2,2,10,2}*160
   5-fold quotients : {2,2,6,2}*96
   6-fold quotients : {2,2,5,2}*80
   10-fold quotients : {2,2,3,2}*48
   15-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
   2-fold covers : {2,2,60,2}*960, {2,2,30,4}*960a, {2,4,30,2}*960a, {4,2,30,2}*960
   3-fold covers : {2,2,90,2}*1440, {2,2,30,6}*1440b, {2,2,30,6}*1440c, {2,6,30,2}*1440b, {2,6,30,2}*1440c, {6,2,30,2}*1440
   4-fold covers : {4,4,30,2}*1920, {2,2,60,4}*1920a, {2,4,60,2}*1920a, {4,2,30,4}*1920a, {2,4,30,4}*1920a, {4,2,60,2}*1920, {2,2,30,8}*1920, {2,8,30,2}*1920, {8,2,30,2}*1920, {2,2,120,2}*1920, {2,2,30,4}*1920, {2,4,30,2}*1920
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (3,4);;
s2 := ( 7, 8)( 9,10)(11,12)(13,14)(15,18)(16,17)(19,20)(21,24)(22,23)(25,26)
(27,30)(28,29)(31,34)(32,33);;
s3 := ( 5,21)( 6,15)( 7,13)( 8,23)( 9,11)(10,31)(12,17)(14,27)(16,25)(18,33)
(19,22)(20,32)(24,29)(26,28)(30,34);;
s4 := (35,36);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1, 
s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s3*s4*s3*s4, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(36)!(1,2);
s1 := Sym(36)!(3,4);
s2 := Sym(36)!( 7, 8)( 9,10)(11,12)(13,14)(15,18)(16,17)(19,20)(21,24)(22,23)
(25,26)(27,30)(28,29)(31,34)(32,33);
s3 := Sym(36)!( 5,21)( 6,15)( 7,13)( 8,23)( 9,11)(10,31)(12,17)(14,27)(16,25)
(18,33)(19,22)(20,32)(24,29)(26,28)(30,34);
s4 := Sym(36)!(35,36);
poly := sub<Sym(36)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s3*s4*s3*s4, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 

to this polytope