Questions?
See the FAQ
or other info.

Polytope of Type {24,2,5}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {24,2,5}*480
if this polytope has a name.
Group : SmallGroup(480,324)
Rank : 4
Schlafli Type : {24,2,5}
Number of vertices, edges, etc : 24, 24, 5, 5
Order of s0s1s2s3 : 120
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {24,2,5,2} of size 960
Vertex Figure Of :
   {2,24,2,5} of size 960
   {4,24,2,5} of size 1920
   {4,24,2,5} of size 1920
   {4,24,2,5} of size 1920
   {4,24,2,5} of size 1920
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {12,2,5}*240
   3-fold quotients : {8,2,5}*160
   4-fold quotients : {6,2,5}*120
   6-fold quotients : {4,2,5}*80
   8-fold quotients : {3,2,5}*60
   12-fold quotients : {2,2,5}*40
Covers (Minimal Covers in Boldface) :
   2-fold covers : {48,2,5}*960, {24,2,10}*960
   3-fold covers : {72,2,5}*1440, {24,2,15}*1440
   4-fold covers : {96,2,5}*1920, {24,4,10}*1920a, {24,2,20}*1920, {48,2,10}*1920
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 5)( 6, 9)( 7,11)( 8,10)(12,15)(13,17)(14,16)(19,22)(20,21)
(23,24);;
s1 := ( 1, 7)( 2, 4)( 3,13)( 5, 8)( 6,10)( 9,19)(11,14)(12,16)(15,23)(17,20)
(18,21)(22,24);;
s2 := (26,27)(28,29);;
s3 := (25,26)(27,28);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(29)!( 2, 3)( 4, 5)( 6, 9)( 7,11)( 8,10)(12,15)(13,17)(14,16)(19,22)
(20,21)(23,24);
s1 := Sym(29)!( 1, 7)( 2, 4)( 3,13)( 5, 8)( 6,10)( 9,19)(11,14)(12,16)(15,23)
(17,20)(18,21)(22,24);
s2 := Sym(29)!(26,27)(28,29);
s3 := Sym(29)!(25,26)(27,28);
poly := sub<Sym(29)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope