Questions?
See the FAQ
or other info.

Polytope of Type {60,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {60,4}*480a
Also Known As : {60,4|2}. if this polytope has another name.
Group : SmallGroup(480,847)
Rank : 3
Schlafli Type : {60,4}
Number of vertices, edges, etc : 60, 120, 4
Order of s0s1s2 : 60
Order of s0s1s2s1 : 2
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
   Flat
   Self-Petrie
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
   Skewing Operation
Facet Of :
   {60,4,2} of size 960
   {60,4,4} of size 1920
Vertex Figure Of :
   {2,60,4} of size 960
   {4,60,4} of size 1920
   {4,60,4} of size 1920
   {4,60,4} of size 1920
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {60,2}*240, {30,4}*240a
   3-fold quotients : {20,4}*160
   4-fold quotients : {30,2}*120
   5-fold quotients : {12,4}*96a
   6-fold quotients : {20,2}*80, {10,4}*80
   8-fold quotients : {15,2}*60
   10-fold quotients : {12,2}*48, {6,4}*48a
   12-fold quotients : {10,2}*40
   15-fold quotients : {4,4}*32
   20-fold quotients : {6,2}*24
   24-fold quotients : {5,2}*20
   30-fold quotients : {2,4}*16, {4,2}*16
   40-fold quotients : {3,2}*12
   60-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   2-fold covers : {120,4}*960a, {60,4}*960a, {120,4}*960b, {60,8}*960a, {60,8}*960b
   3-fold covers : {180,4}*1440a, {60,12}*1440b, {60,12}*1440c
   4-fold covers : {60,8}*1920a, {120,4}*1920a, {120,8}*1920a, {120,8}*1920b, {120,8}*1920c, {120,8}*1920d, {60,16}*1920a, {240,4}*1920a, {60,16}*1920b, {240,4}*1920b, {60,4}*1920a, {120,4}*1920b, {60,8}*1920b, {60,4}*1920d
Permutation Representation (GAP) :
s0 := (  2,  5)(  3,  4)(  6, 11)(  7, 15)(  8, 14)(  9, 13)( 10, 12)( 17, 20)
( 18, 19)( 21, 26)( 22, 30)( 23, 29)( 24, 28)( 25, 27)( 32, 35)( 33, 34)
( 36, 41)( 37, 45)( 38, 44)( 39, 43)( 40, 42)( 47, 50)( 48, 49)( 51, 56)
( 52, 60)( 53, 59)( 54, 58)( 55, 57)( 61, 91)( 62, 95)( 63, 94)( 64, 93)
( 65, 92)( 66,101)( 67,105)( 68,104)( 69,103)( 70,102)( 71, 96)( 72,100)
( 73, 99)( 74, 98)( 75, 97)( 76,106)( 77,110)( 78,109)( 79,108)( 80,107)
( 81,116)( 82,120)( 83,119)( 84,118)( 85,117)( 86,111)( 87,115)( 88,114)
( 89,113)( 90,112);;
s1 := (  1, 67)(  2, 66)(  3, 70)(  4, 69)(  5, 68)(  6, 62)(  7, 61)(  8, 65)
(  9, 64)( 10, 63)( 11, 72)( 12, 71)( 13, 75)( 14, 74)( 15, 73)( 16, 82)
( 17, 81)( 18, 85)( 19, 84)( 20, 83)( 21, 77)( 22, 76)( 23, 80)( 24, 79)
( 25, 78)( 26, 87)( 27, 86)( 28, 90)( 29, 89)( 30, 88)( 31, 97)( 32, 96)
( 33,100)( 34, 99)( 35, 98)( 36, 92)( 37, 91)( 38, 95)( 39, 94)( 40, 93)
( 41,102)( 42,101)( 43,105)( 44,104)( 45,103)( 46,112)( 47,111)( 48,115)
( 49,114)( 50,113)( 51,107)( 52,106)( 53,110)( 54,109)( 55,108)( 56,117)
( 57,116)( 58,120)( 59,119)( 60,118);;
s2 := ( 61, 76)( 62, 77)( 63, 78)( 64, 79)( 65, 80)( 66, 81)( 67, 82)( 68, 83)
( 69, 84)( 70, 85)( 71, 86)( 72, 87)( 73, 88)( 74, 89)( 75, 90)( 91,106)
( 92,107)( 93,108)( 94,109)( 95,110)( 96,111)( 97,112)( 98,113)( 99,114)
(100,115)(101,116)(102,117)(103,118)(104,119)(105,120);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s2*s1, 
s1*s2*s1*s2*s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(120)!(  2,  5)(  3,  4)(  6, 11)(  7, 15)(  8, 14)(  9, 13)( 10, 12)
( 17, 20)( 18, 19)( 21, 26)( 22, 30)( 23, 29)( 24, 28)( 25, 27)( 32, 35)
( 33, 34)( 36, 41)( 37, 45)( 38, 44)( 39, 43)( 40, 42)( 47, 50)( 48, 49)
( 51, 56)( 52, 60)( 53, 59)( 54, 58)( 55, 57)( 61, 91)( 62, 95)( 63, 94)
( 64, 93)( 65, 92)( 66,101)( 67,105)( 68,104)( 69,103)( 70,102)( 71, 96)
( 72,100)( 73, 99)( 74, 98)( 75, 97)( 76,106)( 77,110)( 78,109)( 79,108)
( 80,107)( 81,116)( 82,120)( 83,119)( 84,118)( 85,117)( 86,111)( 87,115)
( 88,114)( 89,113)( 90,112);
s1 := Sym(120)!(  1, 67)(  2, 66)(  3, 70)(  4, 69)(  5, 68)(  6, 62)(  7, 61)
(  8, 65)(  9, 64)( 10, 63)( 11, 72)( 12, 71)( 13, 75)( 14, 74)( 15, 73)
( 16, 82)( 17, 81)( 18, 85)( 19, 84)( 20, 83)( 21, 77)( 22, 76)( 23, 80)
( 24, 79)( 25, 78)( 26, 87)( 27, 86)( 28, 90)( 29, 89)( 30, 88)( 31, 97)
( 32, 96)( 33,100)( 34, 99)( 35, 98)( 36, 92)( 37, 91)( 38, 95)( 39, 94)
( 40, 93)( 41,102)( 42,101)( 43,105)( 44,104)( 45,103)( 46,112)( 47,111)
( 48,115)( 49,114)( 50,113)( 51,107)( 52,106)( 53,110)( 54,109)( 55,108)
( 56,117)( 57,116)( 58,120)( 59,119)( 60,118);
s2 := Sym(120)!( 61, 76)( 62, 77)( 63, 78)( 64, 79)( 65, 80)( 66, 81)( 67, 82)
( 68, 83)( 69, 84)( 70, 85)( 71, 86)( 72, 87)( 73, 88)( 74, 89)( 75, 90)
( 91,106)( 92,107)( 93,108)( 94,109)( 95,110)( 96,111)( 97,112)( 98,113)
( 99,114)(100,115)(101,116)(102,117)(103,118)(104,119)(105,120);
poly := sub<Sym(120)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s2*s1, 
s1*s2*s1*s2*s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope