Questions?
See the FAQ
or other info.

# Polytope of Type {4,12}

Atlas Canonical Name : {4,12}*480b
if this polytope has a name.
Group : SmallGroup(480,951)
Rank : 3
Schlafli Type : {4,12}
Number of vertices, edges, etc : 20, 120, 60
Order of s0s1s2 : 10
Order of s0s1s2s1 : 3
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
{4,12,2} of size 960
Vertex Figure Of :
{2,4,12} of size 960
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {4,6}*240b
4-fold quotients : {4,6}*120
Covers (Minimal Covers in Boldface) :
2-fold covers : {4,24}*960a, {4,24}*960b, {4,12}*960b
3-fold covers : {12,12}*1440b
4-fold covers : {4,12}*1920a, {8,12}*1920a, {8,12}*1920b, {4,24}*1920c, {4,24}*1920d
Permutation Representation (GAP) :
```s0 := (3,4)(7,9);;
s1 := (1,3)(2,4)(6,7)(8,9);;
s2 := (1,2)(5,6);;
poly := Group([s0,s1,s2]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1,
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(9)!(3,4)(7,9);
s1 := Sym(9)!(1,3)(2,4)(6,7)(8,9);
s2 := Sym(9)!(1,2)(5,6);
poly := sub<Sym(9)|s0,s1,s2>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1,
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1 >;

```
References : None.
to this polytope