Questions?
See the FAQ
or other info.

# Polytope of Type {10,20}

Atlas Canonical Name : {10,20}*480a
if this polytope has a name.
Group : SmallGroup(480,956)
Rank : 3
Schlafli Type : {10,20}
Number of vertices, edges, etc : 12, 120, 24
Order of s0s1s2 : 12
Order of s0s1s2s1 : 6
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Non-Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{10,20,2} of size 960
{10,20,4} of size 1920
Vertex Figure Of :
{2,10,20} of size 960
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {10,10}*240a
4-fold quotients : {5,10}*120b, {10,5}*120b
8-fold quotients : {5,5}*60
Covers (Minimal Covers in Boldface) :
2-fold covers : {10,40}*960a, {10,40}*960b, {10,20}*960a
3-fold covers : {10,60}*1440a
4-fold covers : {10,80}*1920a, {10,80}*1920b, {20,20}*1920a, {10,40}*1920a, {10,20}*1920, {20,20}*1920b, {10,40}*1920b
Permutation Representation (GAP) :
```s0 := (6,7)(8,9);;
s1 := (2,3)(5,6)(7,8);;
s2 := (1,2)(3,4)(6,8)(7,9);;
poly := Group([s0,s1,s2]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s2*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1,
s0*s1*s2*s1*s2*s1*s0*s1*s0*s1*s2*s1*s2*s1*s0*s1,
s0*s1*s2*s1*s0*s2*s1*s0*s1*s0*s1*s0*s2*s1*s0*s1*s0*s1*s2 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(9)!(6,7)(8,9);
s1 := Sym(9)!(2,3)(5,6)(7,8);
s2 := Sym(9)!(1,2)(3,4)(6,8)(7,9);
poly := sub<Sym(9)|s0,s1,s2>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s2*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1,
s0*s1*s2*s1*s2*s1*s0*s1*s0*s1*s2*s1*s2*s1*s0*s1,
s0*s1*s2*s1*s0*s2*s1*s0*s1*s0*s1*s0*s2*s1*s0*s1*s0*s1*s2 >;

```
References : None.
to this polytope