Questions?
See the FAQ
or other info.

Polytope of Type {12,10}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {12,10}*480d
if this polytope has a name.
Group : SmallGroup(480,956)
Rank : 3
Schlafli Type : {12,10}
Number of vertices, edges, etc : 24, 120, 20
Order of s0s1s2 : 20
Order of s0s1s2s1 : 10
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Non-Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
Facet Of :
   {12,10,2} of size 960
Vertex Figure Of :
   {2,12,10} of size 960
   {4,12,10} of size 1920
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {6,10}*240e
   4-fold quotients : {3,10}*120a, {6,5}*120b
   8-fold quotients : {3,5}*60
Covers (Minimal Covers in Boldface) :
   2-fold covers : {12,10}*960c
   3-fold covers : {12,10}*1440f
   4-fold covers : {12,20}*1920g, {24,10}*1920d, {12,10}*1920c, {12,20}*1920l, {24,10}*1920f
Permutation Representation (GAP) :
s0 := (2,3)(6,7)(8,9);;
s1 := (1,2)(3,4)(5,6)(8,9);;
s2 := (1,4)(2,3)(6,8)(7,9);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1, 
s2*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(9)!(2,3)(6,7)(8,9);
s1 := Sym(9)!(1,2)(3,4)(5,6)(8,9);
s2 := Sym(9)!(1,4)(2,3)(6,8)(7,9);
poly := sub<Sym(9)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1, 
s2*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 
References : None.
to this polytope