Questions?
See the FAQ
or other info.

Polytope of Type {33,6}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {33,6}*528
if this polytope has a name.
Group : SmallGroup(528,160)
Rank : 3
Schlafli Type : {33,6}
Number of vertices, edges, etc : 44, 132, 8
Order of s0s1s2 : 44
Order of s0s1s2s1 : 6
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
Facet Of :
   {33,6,2} of size 1056
Vertex Figure Of :
   {2,33,6} of size 1056
Quotients (Maximal Quotients in Boldface) :
   11-fold quotients : {3,6}*48
   12-fold quotients : {11,2}*44
   22-fold quotients : {3,3}*24
Covers (Minimal Covers in Boldface) :
   2-fold covers : {33,12}*1056, {66,6}*1056
   3-fold covers : {33,6}*1584
Permutation Representation (GAP) :
s0 := ( 2, 3)( 5,41)( 6,43)( 7,42)( 8,44)( 9,37)(10,39)(11,38)(12,40)(13,33)
(14,35)(15,34)(16,36)(17,29)(18,31)(19,30)(20,32)(21,25)(22,27)(23,26)
(24,28);;
s1 := ( 1, 5)( 2, 6)( 3, 8)( 4, 7)( 9,41)(10,42)(11,44)(12,43)(13,37)(14,38)
(15,40)(16,39)(17,33)(18,34)(19,36)(20,35)(21,29)(22,30)(23,32)(24,31)
(27,28);;
s2 := ( 1, 4)( 5, 8)( 9,12)(13,16)(17,20)(21,24)(25,28)(29,32)(33,36)(37,40)
(41,44);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, 
s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s2*s1*s0*s1*s0*s2*s1*s0*s1*s0*s2*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(44)!( 2, 3)( 5,41)( 6,43)( 7,42)( 8,44)( 9,37)(10,39)(11,38)(12,40)
(13,33)(14,35)(15,34)(16,36)(17,29)(18,31)(19,30)(20,32)(21,25)(22,27)(23,26)
(24,28);
s1 := Sym(44)!( 1, 5)( 2, 6)( 3, 8)( 4, 7)( 9,41)(10,42)(11,44)(12,43)(13,37)
(14,38)(15,40)(16,39)(17,33)(18,34)(19,36)(20,35)(21,29)(22,30)(23,32)(24,31)
(27,28);
s2 := Sym(44)!( 1, 4)( 5, 8)( 9,12)(13,16)(17,20)(21,24)(25,28)(29,32)(33,36)
(37,40)(41,44);
poly := sub<Sym(44)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, 
s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s2*s1*s0*s1*s0*s2*s1*s0*s1*s0*s2*s1*s0*s1 >; 
 
References : None.
to this polytope