Questions?
See the FAQ
or other info.

Polytope of Type {22,6,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {22,6,2}*528
if this polytope has a name.
Group : SmallGroup(528,164)
Rank : 4
Schlafli Type : {22,6,2}
Number of vertices, edges, etc : 22, 66, 6, 2
Order of s0s1s2s3 : 66
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {22,6,2,2} of size 1056
   {22,6,2,3} of size 1584
Vertex Figure Of :
   {2,22,6,2} of size 1056
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {22,2,2}*176
   6-fold quotients : {11,2,2}*88
   11-fold quotients : {2,6,2}*48
   22-fold quotients : {2,3,2}*24
   33-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   2-fold covers : {22,12,2}*1056, {44,6,2}*1056a, {22,6,4}*1056a
   3-fold covers : {22,18,2}*1584, {22,6,6}*1584a, {22,6,6}*1584c, {66,6,2}*1584a, {66,6,2}*1584b
Permutation Representation (GAP) :
s0 := ( 2,11)( 3,10)( 4, 9)( 5, 8)( 6, 7)(13,22)(14,21)(15,20)(16,19)(17,18)
(24,33)(25,32)(26,31)(27,30)(28,29)(35,44)(36,43)(37,42)(38,41)(39,40)(46,55)
(47,54)(48,53)(49,52)(50,51)(57,66)(58,65)(59,64)(60,63)(61,62);;
s1 := ( 1, 2)( 3,11)( 4,10)( 5, 9)( 6, 8)(12,24)(13,23)(14,33)(15,32)(16,31)
(17,30)(18,29)(19,28)(20,27)(21,26)(22,25)(34,35)(36,44)(37,43)(38,42)(39,41)
(45,57)(46,56)(47,66)(48,65)(49,64)(50,63)(51,62)(52,61)(53,60)(54,59)
(55,58);;
s2 := ( 1,45)( 2,46)( 3,47)( 4,48)( 5,49)( 6,50)( 7,51)( 8,52)( 9,53)(10,54)
(11,55)(12,34)(13,35)(14,36)(15,37)(16,38)(17,39)(18,40)(19,41)(20,42)(21,43)
(22,44)(23,56)(24,57)(25,58)(26,59)(27,60)(28,61)(29,62)(30,63)(31,64)(32,65)
(33,66);;
s3 := (67,68);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(68)!( 2,11)( 3,10)( 4, 9)( 5, 8)( 6, 7)(13,22)(14,21)(15,20)(16,19)
(17,18)(24,33)(25,32)(26,31)(27,30)(28,29)(35,44)(36,43)(37,42)(38,41)(39,40)
(46,55)(47,54)(48,53)(49,52)(50,51)(57,66)(58,65)(59,64)(60,63)(61,62);
s1 := Sym(68)!( 1, 2)( 3,11)( 4,10)( 5, 9)( 6, 8)(12,24)(13,23)(14,33)(15,32)
(16,31)(17,30)(18,29)(19,28)(20,27)(21,26)(22,25)(34,35)(36,44)(37,43)(38,42)
(39,41)(45,57)(46,56)(47,66)(48,65)(49,64)(50,63)(51,62)(52,61)(53,60)(54,59)
(55,58);
s2 := Sym(68)!( 1,45)( 2,46)( 3,47)( 4,48)( 5,49)( 6,50)( 7,51)( 8,52)( 9,53)
(10,54)(11,55)(12,34)(13,35)(14,36)(15,37)(16,38)(17,39)(18,40)(19,41)(20,42)
(21,43)(22,44)(23,56)(24,57)(25,58)(26,59)(27,60)(28,61)(29,62)(30,63)(31,64)
(32,65)(33,66);
s3 := Sym(68)!(67,68);
poly := sub<Sym(68)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s0*s1*s2*s1*s0*s1*s2*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope