Questions?
See the FAQ
or other info.

Polytope of Type {2,68,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,68,2}*544
if this polytope has a name.
Group : SmallGroup(544,223)
Rank : 4
Schlafli Type : {2,68,2}
Number of vertices, edges, etc : 2, 68, 68, 2
Order of s0s1s2s3 : 68
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
   Self-Dual
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {2,68,2,2} of size 1088
   {2,68,2,3} of size 1632
Vertex Figure Of :
   {2,2,68,2} of size 1088
   {3,2,68,2} of size 1632
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,34,2}*272
   4-fold quotients : {2,17,2}*136
   17-fold quotients : {2,4,2}*32
   34-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   2-fold covers : {2,68,4}*1088, {4,68,2}*1088, {2,136,2}*1088
   3-fold covers : {2,68,6}*1632a, {6,68,2}*1632a, {2,204,2}*1632
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4,19)( 5,18)( 6,17)( 7,16)( 8,15)( 9,14)(10,13)(11,12)(21,36)(22,35)
(23,34)(24,33)(25,32)(26,31)(27,30)(28,29)(37,54)(38,70)(39,69)(40,68)(41,67)
(42,66)(43,65)(44,64)(45,63)(46,62)(47,61)(48,60)(49,59)(50,58)(51,57)(52,56)
(53,55);;
s2 := ( 3,38)( 4,37)( 5,53)( 6,52)( 7,51)( 8,50)( 9,49)(10,48)(11,47)(12,46)
(13,45)(14,44)(15,43)(16,42)(17,41)(18,40)(19,39)(20,55)(21,54)(22,70)(23,69)
(24,68)(25,67)(26,66)(27,65)(28,64)(29,63)(30,62)(31,61)(32,60)(33,59)(34,58)
(35,57)(36,56);;
s3 := (71,72);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(72)!(1,2);
s1 := Sym(72)!( 4,19)( 5,18)( 6,17)( 7,16)( 8,15)( 9,14)(10,13)(11,12)(21,36)
(22,35)(23,34)(24,33)(25,32)(26,31)(27,30)(28,29)(37,54)(38,70)(39,69)(40,68)
(41,67)(42,66)(43,65)(44,64)(45,63)(46,62)(47,61)(48,60)(49,59)(50,58)(51,57)
(52,56)(53,55);
s2 := Sym(72)!( 3,38)( 4,37)( 5,53)( 6,52)( 7,51)( 8,50)( 9,49)(10,48)(11,47)
(12,46)(13,45)(14,44)(15,43)(16,42)(17,41)(18,40)(19,39)(20,55)(21,54)(22,70)
(23,69)(24,68)(25,67)(26,66)(27,65)(28,64)(29,63)(30,62)(31,61)(32,60)(33,59)
(34,58)(35,57)(36,56);
s3 := Sym(72)!(71,72);
poly := sub<Sym(72)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s2*s3*s2*s3, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope