Questions?
See the FAQ
or other info.

Polytope of Type {5,2,28}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {5,2,28}*560
if this polytope has a name.
Group : SmallGroup(560,121)
Rank : 4
Schlafli Type : {5,2,28}
Number of vertices, edges, etc : 5, 5, 28, 28
Order of s0s1s2s3 : 140
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {5,2,28,2} of size 1120
Vertex Figure Of :
   {2,5,2,28} of size 1120
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {5,2,14}*280
   4-fold quotients : {5,2,7}*140
   7-fold quotients : {5,2,4}*80
   14-fold quotients : {5,2,2}*40
Covers (Minimal Covers in Boldface) :
   2-fold covers : {5,2,56}*1120, {10,2,28}*1120
   3-fold covers : {15,2,28}*1680, {5,2,84}*1680
Permutation Representation (GAP) :
s0 := (2,3)(4,5);;
s1 := (1,2)(3,4);;
s2 := ( 7, 8)( 9,10)(12,15)(13,14)(16,17)(18,19)(20,23)(21,22)(24,25)(26,27)
(28,31)(29,30)(32,33);;
s3 := ( 6,12)( 7, 9)( 8,18)(10,20)(11,14)(13,16)(15,26)(17,28)(19,22)(21,24)
(23,32)(25,29)(27,30)(31,33);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(33)!(2,3)(4,5);
s1 := Sym(33)!(1,2)(3,4);
s2 := Sym(33)!( 7, 8)( 9,10)(12,15)(13,14)(16,17)(18,19)(20,23)(21,22)(24,25)
(26,27)(28,31)(29,30)(32,33);
s3 := Sym(33)!( 6,12)( 7, 9)( 8,18)(10,20)(11,14)(13,16)(15,26)(17,28)(19,22)
(21,24)(23,32)(25,29)(27,30)(31,33);
poly := sub<Sym(33)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 

to this polytope