Questions?
See the FAQ
or other info.

Polytope of Type {2,70,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,70,2}*560
if this polytope has a name.
Group : SmallGroup(560,179)
Rank : 4
Schlafli Type : {2,70,2}
Number of vertices, edges, etc : 2, 70, 70, 2
Order of s0s1s2s3 : 70
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
   Self-Dual
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {2,70,2,2} of size 1120
   {2,70,2,3} of size 1680
Vertex Figure Of :
   {2,2,70,2} of size 1120
   {3,2,70,2} of size 1680
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,35,2}*280
   5-fold quotients : {2,14,2}*112
   7-fold quotients : {2,10,2}*80
   10-fold quotients : {2,7,2}*56
   14-fold quotients : {2,5,2}*40
   35-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   2-fold covers : {2,140,2}*1120, {2,70,4}*1120, {4,70,2}*1120
   3-fold covers : {2,70,6}*1680, {6,70,2}*1680, {2,210,2}*1680
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4, 9)( 5, 8)( 6, 7)(10,31)(11,37)(12,36)(13,35)(14,34)(15,33)(16,32)
(17,24)(18,30)(19,29)(20,28)(21,27)(22,26)(23,25)(39,44)(40,43)(41,42)(45,66)
(46,72)(47,71)(48,70)(49,69)(50,68)(51,67)(52,59)(53,65)(54,64)(55,63)(56,62)
(57,61)(58,60);;
s2 := ( 3,46)( 4,45)( 5,51)( 6,50)( 7,49)( 8,48)( 9,47)(10,39)(11,38)(12,44)
(13,43)(14,42)(15,41)(16,40)(17,67)(18,66)(19,72)(20,71)(21,70)(22,69)(23,68)
(24,60)(25,59)(26,65)(27,64)(28,63)(29,62)(30,61)(31,53)(32,52)(33,58)(34,57)
(35,56)(36,55)(37,54);;
s3 := (73,74);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(74)!(1,2);
s1 := Sym(74)!( 4, 9)( 5, 8)( 6, 7)(10,31)(11,37)(12,36)(13,35)(14,34)(15,33)
(16,32)(17,24)(18,30)(19,29)(20,28)(21,27)(22,26)(23,25)(39,44)(40,43)(41,42)
(45,66)(46,72)(47,71)(48,70)(49,69)(50,68)(51,67)(52,59)(53,65)(54,64)(55,63)
(56,62)(57,61)(58,60);
s2 := Sym(74)!( 3,46)( 4,45)( 5,51)( 6,50)( 7,49)( 8,48)( 9,47)(10,39)(11,38)
(12,44)(13,43)(14,42)(15,41)(16,40)(17,67)(18,66)(19,72)(20,71)(21,70)(22,69)
(23,68)(24,60)(25,59)(26,65)(27,64)(28,63)(29,62)(30,61)(31,53)(32,52)(33,58)
(34,57)(35,56)(36,55)(37,54);
s3 := Sym(74)!(73,74);
poly := sub<Sym(74)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s2*s3*s2*s3, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope