Questions?
See the FAQ
or other info.

Polytope of Type {3,2,48}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,2,48}*576
if this polytope has a name.
Group : SmallGroup(576,2112)
Rank : 4
Schlafli Type : {3,2,48}
Number of vertices, edges, etc : 3, 3, 48, 48
Order of s0s1s2s3 : 48
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {3,2,48,2} of size 1152
Vertex Figure Of :
   {2,3,2,48} of size 1152
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {3,2,24}*288
   3-fold quotients : {3,2,16}*192
   4-fold quotients : {3,2,12}*144
   6-fold quotients : {3,2,8}*96
   8-fold quotients : {3,2,6}*72
   12-fold quotients : {3,2,4}*48
   16-fold quotients : {3,2,3}*36
   24-fold quotients : {3,2,2}*24
Covers (Minimal Covers in Boldface) :
   2-fold covers : {3,2,96}*1152, {6,2,48}*1152
   3-fold covers : {3,2,144}*1728, {9,2,48}*1728, {3,6,48}*1728a, {3,6,48}*1728b
Permutation Representation (GAP) :
s0 := (2,3);;
s1 := (1,2);;
s2 := ( 5, 6)( 7, 8)( 9,12)(10,14)(11,13)(15,18)(16,20)(17,19)(21,24)(22,26)
(23,25)(27,30)(28,32)(29,31)(33,36)(34,38)(35,37)(39,42)(40,44)(41,43)(46,49)
(47,48)(50,51);;
s3 := ( 4,10)( 5, 7)( 6,16)( 8,11)( 9,13)(12,22)(14,17)(15,19)(18,28)(20,23)
(21,25)(24,34)(26,29)(27,31)(30,40)(32,35)(33,37)(36,46)(38,41)(39,43)(42,50)
(44,47)(45,48)(49,51);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s1*s0*s1*s0*s1, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(51)!(2,3);
s1 := Sym(51)!(1,2);
s2 := Sym(51)!( 5, 6)( 7, 8)( 9,12)(10,14)(11,13)(15,18)(16,20)(17,19)(21,24)
(22,26)(23,25)(27,30)(28,32)(29,31)(33,36)(34,38)(35,37)(39,42)(40,44)(41,43)
(46,49)(47,48)(50,51);
s3 := Sym(51)!( 4,10)( 5, 7)( 6,16)( 8,11)( 9,13)(12,22)(14,17)(15,19)(18,28)
(20,23)(21,25)(24,34)(26,29)(27,31)(30,40)(32,35)(33,37)(36,46)(38,41)(39,43)
(42,50)(44,47)(45,48)(49,51);
poly := sub<Sym(51)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s1*s0*s1*s0*s1, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 

to this polytope