Questions?
See the FAQ
or other info.

Polytope of Type {2,9,8}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,9,8}*576
if this polytope has a name.
Group : SmallGroup(576,4979)
Rank : 4
Schlafli Type : {2,9,8}
Number of vertices, edges, etc : 2, 18, 72, 16
Order of s0s1s2s3 : 36
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {2,9,8,2} of size 1152
Vertex Figure Of :
   {2,2,9,8} of size 1152
   {3,2,9,8} of size 1728
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,9,4}*288
   3-fold quotients : {2,3,8}*192
   4-fold quotients : {2,9,4}*144
   6-fold quotients : {2,3,4}*96
   8-fold quotients : {2,9,2}*72
   12-fold quotients : {2,3,4}*48
   24-fold quotients : {2,3,2}*24
Covers (Minimal Covers in Boldface) :
   2-fold covers : {2,18,8}*1152b
   3-fold covers : {2,27,8}*1728, {2,9,24}*1728, {6,9,8}*1728
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (  5,  7)(  6,  8)(  9, 10)( 11, 19)( 12, 20)( 13, 23)( 14, 24)( 15, 21)
( 16, 22)( 17, 26)( 18, 25)( 27, 59)( 28, 60)( 29, 63)( 30, 64)( 31, 61)
( 32, 62)( 33, 66)( 34, 65)( 35, 51)( 36, 52)( 37, 55)( 38, 56)( 39, 53)
( 40, 54)( 41, 58)( 42, 57)( 43, 67)( 44, 68)( 45, 71)( 46, 72)( 47, 69)
( 48, 70)( 49, 74)( 50, 73)( 75, 76)( 77, 80)( 78, 79)( 83, 92)( 84, 91)
( 85, 96)( 86, 95)( 87, 94)( 88, 93)( 89, 97)( 90, 98)( 99,132)(100,131)
(101,136)(102,135)(103,134)(104,133)(105,137)(106,138)(107,124)(108,123)
(109,128)(110,127)(111,126)(112,125)(113,129)(114,130)(115,140)(116,139)
(117,144)(118,143)(119,142)(120,141)(121,145)(122,146);;
s2 := (  3, 27)(  4, 28)(  5, 30)(  6, 29)(  7, 33)(  8, 34)(  9, 31)( 10, 32)
( 11, 43)( 12, 44)( 13, 46)( 14, 45)( 15, 49)( 16, 50)( 17, 47)( 18, 48)
( 19, 35)( 20, 36)( 21, 38)( 22, 37)( 23, 41)( 24, 42)( 25, 39)( 26, 40)
( 51, 59)( 52, 60)( 53, 62)( 54, 61)( 55, 65)( 56, 66)( 57, 63)( 58, 64)
( 69, 70)( 71, 73)( 72, 74)( 75,100)( 76, 99)( 77,101)( 78,102)( 79,106)
( 80,105)( 81,104)( 82,103)( 83,116)( 84,115)( 85,117)( 86,118)( 87,122)
( 88,121)( 89,120)( 90,119)( 91,108)( 92,107)( 93,109)( 94,110)( 95,114)
( 96,113)( 97,112)( 98,111)(123,132)(124,131)(125,133)(126,134)(127,138)
(128,137)(129,136)(130,135)(139,140)(143,146)(144,145);;
s3 := (  3, 81)(  4, 82)(  5, 79)(  6, 80)(  7, 78)(  8, 77)(  9, 76)( 10, 75)
( 11, 89)( 12, 90)( 13, 87)( 14, 88)( 15, 86)( 16, 85)( 17, 84)( 18, 83)
( 19, 97)( 20, 98)( 21, 95)( 22, 96)( 23, 94)( 24, 93)( 25, 92)( 26, 91)
( 27,105)( 28,106)( 29,103)( 30,104)( 31,102)( 32,101)( 33,100)( 34, 99)
( 35,113)( 36,114)( 37,111)( 38,112)( 39,110)( 40,109)( 41,108)( 42,107)
( 43,121)( 44,122)( 45,119)( 46,120)( 47,118)( 48,117)( 49,116)( 50,115)
( 51,129)( 52,130)( 53,127)( 54,128)( 55,126)( 56,125)( 57,124)( 58,123)
( 59,137)( 60,138)( 61,135)( 62,136)( 63,134)( 64,133)( 65,132)( 66,131)
( 67,145)( 68,146)( 69,143)( 70,144)( 71,142)( 72,141)( 73,140)( 74,139);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2, 
s3*s1*s2*s3*s2*s3*s1*s2*s3*s1*s2*s3*s2*s3*s1*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(146)!(1,2);
s1 := Sym(146)!(  5,  7)(  6,  8)(  9, 10)( 11, 19)( 12, 20)( 13, 23)( 14, 24)
( 15, 21)( 16, 22)( 17, 26)( 18, 25)( 27, 59)( 28, 60)( 29, 63)( 30, 64)
( 31, 61)( 32, 62)( 33, 66)( 34, 65)( 35, 51)( 36, 52)( 37, 55)( 38, 56)
( 39, 53)( 40, 54)( 41, 58)( 42, 57)( 43, 67)( 44, 68)( 45, 71)( 46, 72)
( 47, 69)( 48, 70)( 49, 74)( 50, 73)( 75, 76)( 77, 80)( 78, 79)( 83, 92)
( 84, 91)( 85, 96)( 86, 95)( 87, 94)( 88, 93)( 89, 97)( 90, 98)( 99,132)
(100,131)(101,136)(102,135)(103,134)(104,133)(105,137)(106,138)(107,124)
(108,123)(109,128)(110,127)(111,126)(112,125)(113,129)(114,130)(115,140)
(116,139)(117,144)(118,143)(119,142)(120,141)(121,145)(122,146);
s2 := Sym(146)!(  3, 27)(  4, 28)(  5, 30)(  6, 29)(  7, 33)(  8, 34)(  9, 31)
( 10, 32)( 11, 43)( 12, 44)( 13, 46)( 14, 45)( 15, 49)( 16, 50)( 17, 47)
( 18, 48)( 19, 35)( 20, 36)( 21, 38)( 22, 37)( 23, 41)( 24, 42)( 25, 39)
( 26, 40)( 51, 59)( 52, 60)( 53, 62)( 54, 61)( 55, 65)( 56, 66)( 57, 63)
( 58, 64)( 69, 70)( 71, 73)( 72, 74)( 75,100)( 76, 99)( 77,101)( 78,102)
( 79,106)( 80,105)( 81,104)( 82,103)( 83,116)( 84,115)( 85,117)( 86,118)
( 87,122)( 88,121)( 89,120)( 90,119)( 91,108)( 92,107)( 93,109)( 94,110)
( 95,114)( 96,113)( 97,112)( 98,111)(123,132)(124,131)(125,133)(126,134)
(127,138)(128,137)(129,136)(130,135)(139,140)(143,146)(144,145);
s3 := Sym(146)!(  3, 81)(  4, 82)(  5, 79)(  6, 80)(  7, 78)(  8, 77)(  9, 76)
( 10, 75)( 11, 89)( 12, 90)( 13, 87)( 14, 88)( 15, 86)( 16, 85)( 17, 84)
( 18, 83)( 19, 97)( 20, 98)( 21, 95)( 22, 96)( 23, 94)( 24, 93)( 25, 92)
( 26, 91)( 27,105)( 28,106)( 29,103)( 30,104)( 31,102)( 32,101)( 33,100)
( 34, 99)( 35,113)( 36,114)( 37,111)( 38,112)( 39,110)( 40,109)( 41,108)
( 42,107)( 43,121)( 44,122)( 45,119)( 46,120)( 47,118)( 48,117)( 49,116)
( 50,115)( 51,129)( 52,130)( 53,127)( 54,128)( 55,126)( 56,125)( 57,124)
( 58,123)( 59,137)( 60,138)( 61,135)( 62,136)( 63,134)( 64,133)( 65,132)
( 66,131)( 67,145)( 68,146)( 69,143)( 70,144)( 71,142)( 72,141)( 73,140)
( 74,139);
poly := sub<Sym(146)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2, 
s3*s1*s2*s3*s2*s3*s1*s2*s3*s1*s2*s3*s2*s3*s1*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope