Questions?
See the FAQ
or other info.

# Polytope of Type {4,24}

Atlas Canonical Name : {4,24}*576b
if this polytope has a name.
Group : SmallGroup(576,5357)
Rank : 3
Schlafli Type : {4,24}
Number of vertices, edges, etc : 12, 144, 72
Order of s0s1s2 : 8
Order of s0s1s2s1 : 12
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{4,24,2} of size 1152
Vertex Figure Of :
{2,4,24} of size 1152
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {4,12}*288
4-fold quotients : {4,6}*144
8-fold quotients : {4,6}*72
9-fold quotients : {4,8}*64b
18-fold quotients : {4,4}*32
36-fold quotients : {2,4}*16, {4,2}*16
72-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
2-fold covers : {4,24}*1152a, {8,24}*1152b, {8,24}*1152d
3-fold covers : {4,24}*1728c, {12,24}*1728k, {12,24}*1728l, {4,24}*1728g, {12,24}*1728r, {12,24}*1728w
Permutation Representation (GAP) :
```s0 := ( 4, 7)( 5, 8)( 6, 9)(13,16)(14,17)(15,18)(19,28)(20,29)(21,30)(22,34)
(23,35)(24,36)(25,31)(26,32)(27,33)(40,43)(41,44)(42,45)(49,52)(50,53)(51,54)
(55,64)(56,65)(57,66)(58,70)(59,71)(60,72)(61,67)(62,68)(63,69);;
s1 := ( 2, 4)( 3, 7)( 6, 8)(11,13)(12,16)(15,17)(19,28)(20,31)(21,34)(22,29)
(23,32)(24,35)(25,30)(26,33)(27,36)(37,55)(38,58)(39,61)(40,56)(41,59)(42,62)
(43,57)(44,60)(45,63)(46,64)(47,67)(48,70)(49,65)(50,68)(51,71)(52,66)(53,69)
(54,72);;
s2 := ( 1,47)( 2,46)( 3,48)( 4,53)( 5,52)( 6,54)( 7,50)( 8,49)( 9,51)(10,38)
(11,37)(12,39)(13,44)(14,43)(15,45)(16,41)(17,40)(18,42)(19,56)(20,55)(21,57)
(22,62)(23,61)(24,63)(25,59)(26,58)(27,60)(28,65)(29,64)(30,66)(31,71)(32,70)
(33,72)(34,68)(35,67)(36,69);;
poly := Group([s0,s1,s2]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s1*s0*s1*s2*s1*s2*s0*s1*s2*s1*s0*s1*s2*s1,
s2*s0*s1*s2*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s1*s2*s0*s1,
s2*s1*s0*s1*s0*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(72)!( 4, 7)( 5, 8)( 6, 9)(13,16)(14,17)(15,18)(19,28)(20,29)(21,30)
(22,34)(23,35)(24,36)(25,31)(26,32)(27,33)(40,43)(41,44)(42,45)(49,52)(50,53)
(51,54)(55,64)(56,65)(57,66)(58,70)(59,71)(60,72)(61,67)(62,68)(63,69);
s1 := Sym(72)!( 2, 4)( 3, 7)( 6, 8)(11,13)(12,16)(15,17)(19,28)(20,31)(21,34)
(22,29)(23,32)(24,35)(25,30)(26,33)(27,36)(37,55)(38,58)(39,61)(40,56)(41,59)
(42,62)(43,57)(44,60)(45,63)(46,64)(47,67)(48,70)(49,65)(50,68)(51,71)(52,66)
(53,69)(54,72);
s2 := Sym(72)!( 1,47)( 2,46)( 3,48)( 4,53)( 5,52)( 6,54)( 7,50)( 8,49)( 9,51)
(10,38)(11,37)(12,39)(13,44)(14,43)(15,45)(16,41)(17,40)(18,42)(19,56)(20,55)
(21,57)(22,62)(23,61)(24,63)(25,59)(26,58)(27,60)(28,65)(29,64)(30,66)(31,71)
(32,70)(33,72)(34,68)(35,67)(36,69);
poly := sub<Sym(72)|s0,s1,s2>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s1*s0*s1*s2*s1*s2*s0*s1*s2*s1*s0*s1*s2*s1,
s2*s0*s1*s2*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s1*s2*s0*s1,
s2*s1*s0*s1*s0*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1 >;

```
References : None.
to this polytope