Questions?
See the FAQ
or other info.

# Polytope of Type {6,24,2}

Atlas Canonical Name : {6,24,2}*576a
if this polytope has a name.
Group : SmallGroup(576,6554)
Rank : 4
Schlafli Type : {6,24,2}
Number of vertices, edges, etc : 6, 72, 24, 2
Order of s0s1s2s3 : 24
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{6,24,2,2} of size 1152
{6,24,2,3} of size 1728
Vertex Figure Of :
{2,6,24,2} of size 1152
{3,6,24,2} of size 1728
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {6,12,2}*288a
3-fold quotients : {2,24,2}*192, {6,8,2}*192
4-fold quotients : {6,6,2}*144a
6-fold quotients : {2,12,2}*96, {6,4,2}*96a
9-fold quotients : {2,8,2}*64
12-fold quotients : {2,6,2}*48, {6,2,2}*48
18-fold quotients : {2,4,2}*32
24-fold quotients : {2,3,2}*24, {3,2,2}*24
36-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
2-fold covers : {6,24,4}*1152c, {12,24,2}*1152a, {6,48,2}*1152b
3-fold covers : {6,72,2}*1728a, {18,24,2}*1728a, {6,24,2}*1728b, {6,24,6}*1728b, {6,24,6}*1728d, {6,24,2}*1728f
Permutation Representation (GAP) :
```s0 := ( 2, 3)( 5, 6)( 8, 9)(11,12)(14,15)(17,18)(20,21)(23,24)(26,27)(29,30)
(32,33)(35,36)(38,39)(41,42)(44,45)(47,48)(50,51)(53,54)(56,57)(59,60)(62,63)
(65,66)(68,69)(71,72);;
s1 := ( 1, 2)( 4, 8)( 5, 7)( 6, 9)(10,11)(13,17)(14,16)(15,18)(19,29)(20,28)
(21,30)(22,35)(23,34)(24,36)(25,32)(26,31)(27,33)(37,56)(38,55)(39,57)(40,62)
(41,61)(42,63)(43,59)(44,58)(45,60)(46,65)(47,64)(48,66)(49,71)(50,70)(51,72)
(52,68)(53,67)(54,69);;
s2 := ( 1,40)( 2,41)( 3,42)( 4,37)( 5,38)( 6,39)( 7,43)( 8,44)( 9,45)(10,49)
(11,50)(12,51)(13,46)(14,47)(15,48)(16,52)(17,53)(18,54)(19,67)(20,68)(21,69)
(22,64)(23,65)(24,66)(25,70)(26,71)(27,72)(28,58)(29,59)(30,60)(31,55)(32,56)
(33,57)(34,61)(35,62)(36,63);;
s3 := (73,74);;
poly := Group([s0,s1,s2,s3]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s1*s2*s1*s0*s1*s2*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(74)!( 2, 3)( 5, 6)( 8, 9)(11,12)(14,15)(17,18)(20,21)(23,24)(26,27)
(29,30)(32,33)(35,36)(38,39)(41,42)(44,45)(47,48)(50,51)(53,54)(56,57)(59,60)
(62,63)(65,66)(68,69)(71,72);
s1 := Sym(74)!( 1, 2)( 4, 8)( 5, 7)( 6, 9)(10,11)(13,17)(14,16)(15,18)(19,29)
(20,28)(21,30)(22,35)(23,34)(24,36)(25,32)(26,31)(27,33)(37,56)(38,55)(39,57)
(40,62)(41,61)(42,63)(43,59)(44,58)(45,60)(46,65)(47,64)(48,66)(49,71)(50,70)
(51,72)(52,68)(53,67)(54,69);
s2 := Sym(74)!( 1,40)( 2,41)( 3,42)( 4,37)( 5,38)( 6,39)( 7,43)( 8,44)( 9,45)
(10,49)(11,50)(12,51)(13,46)(14,47)(15,48)(16,52)(17,53)(18,54)(19,67)(20,68)
(21,69)(22,64)(23,65)(24,66)(25,70)(26,71)(27,72)(28,58)(29,59)(30,60)(31,55)
(32,56)(33,57)(34,61)(35,62)(36,63);
s3 := Sym(74)!(73,74);
poly := sub<Sym(74)|s0,s1,s2,s3>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s0*s1*s2*s1*s0*s1*s2*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;

```

to this polytope