Questions?
See the FAQ
or other info.

Polytope of Type {24,2,3,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {24,2,3,2}*576
if this polytope has a name.
Group : SmallGroup(576,6554)
Rank : 5
Schlafli Type : {24,2,3,2}
Number of vertices, edges, etc : 24, 24, 3, 3, 2
Order of s0s1s2s3s4 : 24
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {24,2,3,2,2} of size 1152
   {24,2,3,2,3} of size 1728
Vertex Figure Of :
   {2,24,2,3,2} of size 1152
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {12,2,3,2}*288
   3-fold quotients : {8,2,3,2}*192
   4-fold quotients : {6,2,3,2}*144
   6-fold quotients : {4,2,3,2}*96
   8-fold quotients : {3,2,3,2}*72
   12-fold quotients : {2,2,3,2}*48
Covers (Minimal Covers in Boldface) :
   2-fold covers : {48,2,3,2}*1152, {24,2,6,2}*1152
   3-fold covers : {72,2,3,2}*1728, {24,2,9,2}*1728, {24,6,3,2}*1728a, {24,2,3,6}*1728, {24,6,3,2}*1728b
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 5)( 6, 9)( 7,11)( 8,10)(12,15)(13,17)(14,16)(19,22)(20,21)
(23,24);;
s1 := ( 1, 7)( 2, 4)( 3,13)( 5, 8)( 6,10)( 9,19)(11,14)(12,16)(15,23)(17,20)
(18,21)(22,24);;
s2 := (26,27);;
s3 := (25,26);;
s4 := (28,29);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s3*s4*s3*s4, s2*s3*s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(29)!( 2, 3)( 4, 5)( 6, 9)( 7,11)( 8,10)(12,15)(13,17)(14,16)(19,22)
(20,21)(23,24);
s1 := Sym(29)!( 1, 7)( 2, 4)( 3,13)( 5, 8)( 6,10)( 9,19)(11,14)(12,16)(15,23)
(17,20)(18,21)(22,24);
s2 := Sym(29)!(26,27);
s3 := Sym(29)!(25,26);
s4 := Sym(29)!(28,29);
poly := sub<Sym(29)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4, 
s2*s3*s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope