Questions?
See the FAQ
or other info.

Polytope of Type {8,6,6}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {8,6,6}*576b
if this polytope has a name.
Group : SmallGroup(576,6606)
Rank : 4
Schlafli Type : {8,6,6}
Number of vertices, edges, etc : 8, 24, 18, 6
Order of s0s1s2s3 : 24
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {8,6,6,2} of size 1152
   {8,6,6,3} of size 1728
Vertex Figure Of :
   {2,8,6,6} of size 1152
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {4,6,6}*288b
   3-fold quotients : {8,6,2}*192
   4-fold quotients : {2,6,6}*144c
   6-fold quotients : {4,6,2}*96a
   8-fold quotients : {2,3,6}*72
   9-fold quotients : {8,2,2}*64
   12-fold quotients : {2,6,2}*48
   18-fold quotients : {4,2,2}*32
   24-fold quotients : {2,3,2}*24
   36-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   2-fold covers : {8,12,6}*1152a, {8,6,12}*1152a, {16,6,6}*1152b
   3-fold covers : {8,18,6}*1728b, {8,6,6}*1728a, {24,6,6}*1728c, {8,6,6}*1728e, {24,6,6}*1728g
Permutation Representation (GAP) :
s0 := (19,28)(20,29)(21,30)(22,31)(23,32)(24,33)(25,34)(26,35)(27,36)(37,55)
(38,56)(39,57)(40,58)(41,59)(42,60)(43,61)(44,62)(45,63)(46,64)(47,65)(48,66)
(49,67)(50,68)(51,69)(52,70)(53,71)(54,72);;
s1 := ( 1,37)( 2,39)( 3,38)( 4,43)( 5,45)( 6,44)( 7,40)( 8,42)( 9,41)(10,46)
(11,48)(12,47)(13,52)(14,54)(15,53)(16,49)(17,51)(18,50)(19,64)(20,66)(21,65)
(22,70)(23,72)(24,71)(25,67)(26,69)(27,68)(28,55)(29,57)(30,56)(31,61)(32,63)
(33,62)(34,58)(35,60)(36,59);;
s2 := ( 1, 5)( 2, 4)( 3, 6)( 7, 8)(10,14)(11,13)(12,15)(16,17)(19,23)(20,22)
(21,24)(25,26)(28,32)(29,31)(30,33)(34,35)(37,41)(38,40)(39,42)(43,44)(46,50)
(47,49)(48,51)(52,53)(55,59)(56,58)(57,60)(61,62)(64,68)(65,67)(66,69)
(70,71);;
s3 := ( 2, 3)( 5, 6)( 8, 9)(11,12)(14,15)(17,18)(20,21)(23,24)(26,27)(29,30)
(32,33)(35,36)(38,39)(41,42)(44,45)(47,48)(50,51)(53,54)(56,57)(59,60)(62,63)
(65,66)(68,69)(71,72);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s2*s1*s0*s1*s2*s1, 
s3*s1*s2*s3*s2*s3*s1*s2*s3*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(72)!(19,28)(20,29)(21,30)(22,31)(23,32)(24,33)(25,34)(26,35)(27,36)
(37,55)(38,56)(39,57)(40,58)(41,59)(42,60)(43,61)(44,62)(45,63)(46,64)(47,65)
(48,66)(49,67)(50,68)(51,69)(52,70)(53,71)(54,72);
s1 := Sym(72)!( 1,37)( 2,39)( 3,38)( 4,43)( 5,45)( 6,44)( 7,40)( 8,42)( 9,41)
(10,46)(11,48)(12,47)(13,52)(14,54)(15,53)(16,49)(17,51)(18,50)(19,64)(20,66)
(21,65)(22,70)(23,72)(24,71)(25,67)(26,69)(27,68)(28,55)(29,57)(30,56)(31,61)
(32,63)(33,62)(34,58)(35,60)(36,59);
s2 := Sym(72)!( 1, 5)( 2, 4)( 3, 6)( 7, 8)(10,14)(11,13)(12,15)(16,17)(19,23)
(20,22)(21,24)(25,26)(28,32)(29,31)(30,33)(34,35)(37,41)(38,40)(39,42)(43,44)
(46,50)(47,49)(48,51)(52,53)(55,59)(56,58)(57,60)(61,62)(64,68)(65,67)(66,69)
(70,71);
s3 := Sym(72)!( 2, 3)( 5, 6)( 8, 9)(11,12)(14,15)(17,18)(20,21)(23,24)(26,27)
(29,30)(32,33)(35,36)(38,39)(41,42)(44,45)(47,48)(50,51)(53,54)(56,57)(59,60)
(62,63)(65,66)(68,69)(71,72);
poly := sub<Sym(72)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s1*s2*s1*s0*s1*s2*s1, s3*s1*s2*s3*s2*s3*s1*s2*s3*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope