Questions?
See the FAQ
or other info.

Polytope of Type {12,12,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {12,12,2}*576b
if this polytope has a name.
Group : SmallGroup(576,6953)
Rank : 4
Schlafli Type : {12,12,2}
Number of vertices, edges, etc : 12, 72, 12, 2
Order of s0s1s2s3 : 12
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {12,12,2,2} of size 1152
   {12,12,2,3} of size 1728
Vertex Figure Of :
   {2,12,12,2} of size 1152
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {6,12,2}*288b, {12,6,2}*288c
   3-fold quotients : {4,12,2}*192a
   4-fold quotients : {6,6,2}*144b
   6-fold quotients : {2,12,2}*96, {4,6,2}*96a
   8-fold quotients : {6,3,2}*72
   9-fold quotients : {4,4,2}*64
   12-fold quotients : {2,6,2}*48
   18-fold quotients : {2,4,2}*32, {4,2,2}*32
   24-fold quotients : {2,3,2}*24
   36-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   2-fold covers : {12,12,4}*1152a, {12,24,2}*1152b, {24,12,2}*1152c, {12,24,2}*1152e, {24,12,2}*1152f, {12,12,2}*1152b
   3-fold covers : {12,36,2}*1728b, {12,12,2}*1728b, {12,12,6}*1728c, {12,12,6}*1728e, {12,12,2}*1728h
Permutation Representation (GAP) :
s0 := ( 4, 7)( 5, 8)( 6, 9)(13,16)(14,17)(15,18)(22,25)(23,26)(24,27)(31,34)
(32,35)(33,36)(37,55)(38,56)(39,57)(40,61)(41,62)(42,63)(43,58)(44,59)(45,60)
(46,64)(47,65)(48,66)(49,70)(50,71)(51,72)(52,67)(53,68)(54,69);;
s1 := ( 1,40)( 2,42)( 3,41)( 4,37)( 5,39)( 6,38)( 7,43)( 8,45)( 9,44)(10,49)
(11,51)(12,50)(13,46)(14,48)(15,47)(16,52)(17,54)(18,53)(19,58)(20,60)(21,59)
(22,55)(23,57)(24,56)(25,61)(26,63)(27,62)(28,67)(29,69)(30,68)(31,64)(32,66)
(33,65)(34,70)(35,72)(36,71);;
s2 := ( 1, 2)( 4, 8)( 5, 7)( 6, 9)(10,11)(13,17)(14,16)(15,18)(19,20)(22,26)
(23,25)(24,27)(28,29)(31,35)(32,34)(33,36)(37,65)(38,64)(39,66)(40,71)(41,70)
(42,72)(43,68)(44,67)(45,69)(46,56)(47,55)(48,57)(49,62)(50,61)(51,63)(52,59)
(53,58)(54,60);;
s3 := (73,74);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s2*s0*s1*s0*s1*s2*s0*s1*s0*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(74)!( 4, 7)( 5, 8)( 6, 9)(13,16)(14,17)(15,18)(22,25)(23,26)(24,27)
(31,34)(32,35)(33,36)(37,55)(38,56)(39,57)(40,61)(41,62)(42,63)(43,58)(44,59)
(45,60)(46,64)(47,65)(48,66)(49,70)(50,71)(51,72)(52,67)(53,68)(54,69);
s1 := Sym(74)!( 1,40)( 2,42)( 3,41)( 4,37)( 5,39)( 6,38)( 7,43)( 8,45)( 9,44)
(10,49)(11,51)(12,50)(13,46)(14,48)(15,47)(16,52)(17,54)(18,53)(19,58)(20,60)
(21,59)(22,55)(23,57)(24,56)(25,61)(26,63)(27,62)(28,67)(29,69)(30,68)(31,64)
(32,66)(33,65)(34,70)(35,72)(36,71);
s2 := Sym(74)!( 1, 2)( 4, 8)( 5, 7)( 6, 9)(10,11)(13,17)(14,16)(15,18)(19,20)
(22,26)(23,25)(24,27)(28,29)(31,35)(32,34)(33,36)(37,65)(38,64)(39,66)(40,71)
(41,70)(42,72)(43,68)(44,67)(45,69)(46,56)(47,55)(48,57)(49,62)(50,61)(51,63)
(52,59)(53,58)(54,60);
s3 := Sym(74)!(73,74);
poly := sub<Sym(74)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s2*s0*s1*s0*s1*s2*s0*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope