Questions?
See the FAQ
or other info.

Polytope of Type {4,6,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,6,4}*576a
Also Known As : {{4,6}4,{6,4|2}}. if this polytope has another name.
Group : SmallGroup(576,8399)
Rank : 4
Schlafli Type : {4,6,4}
Number of vertices, edges, etc : 12, 36, 36, 4
Order of s0s1s2s3 : 4
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {4,6,4,2} of size 1152
Vertex Figure Of :
   {2,4,6,4} of size 1152
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {4,6,2}*288
   4-fold quotients : {4,6,2}*144
   9-fold quotients : {4,2,4}*64
   18-fold quotients : {2,2,4}*32, {4,2,2}*32
   36-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   2-fold covers : {4,12,4}*1152b, {4,6,8}*1152a, {8,6,4}*1152b
   3-fold covers : {4,6,4}*1728b, {12,6,4}*1728f, {12,6,4}*1728g, {4,6,12}*1728k, {4,6,4}*1728c, {12,6,4}*1728m, {12,6,4}*1728n
Permutation Representation (GAP) :
s0 := ( 4, 7)( 5, 8)( 6, 9)(13,16)(14,17)(15,18)(22,25)(23,26)(24,27)(31,34)
(32,35)(33,36);;
s1 := ( 2, 4)( 3, 7)( 6, 8)(11,13)(12,16)(15,17)(20,22)(21,25)(24,26)(29,31)
(30,34)(33,35);;
s2 := ( 1,20)( 2,19)( 3,21)( 4,26)( 5,25)( 6,27)( 7,23)( 8,22)( 9,24)(10,29)
(11,28)(12,30)(13,35)(14,34)(15,36)(16,32)(17,31)(18,33);;
s3 := (19,28)(20,29)(21,30)(22,31)(23,32)(24,33)(25,34)(26,35)(27,36);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s3*s2*s1*s2*s3*s2, s2*s3*s2*s3*s2*s3*s2*s3, 
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(36)!( 4, 7)( 5, 8)( 6, 9)(13,16)(14,17)(15,18)(22,25)(23,26)(24,27)
(31,34)(32,35)(33,36);
s1 := Sym(36)!( 2, 4)( 3, 7)( 6, 8)(11,13)(12,16)(15,17)(20,22)(21,25)(24,26)
(29,31)(30,34)(33,35);
s2 := Sym(36)!( 1,20)( 2,19)( 3,21)( 4,26)( 5,25)( 6,27)( 7,23)( 8,22)( 9,24)
(10,29)(11,28)(12,30)(13,35)(14,34)(15,36)(16,32)(17,31)(18,33);
s3 := Sym(36)!(19,28)(20,29)(21,30)(22,31)(23,32)(24,33)(25,34)(26,35)(27,36);
poly := sub<Sym(36)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s1*s0*s1*s0*s1*s0*s1, s1*s2*s3*s2*s1*s2*s3*s2, 
s2*s3*s2*s3*s2*s3*s2*s3, s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 
References : None.
to this polytope