Questions?
See the FAQ
or other info.

# Polytope of Type {6,12,2,2}

Atlas Canonical Name : {6,12,2,2}*576b
if this polytope has a name.
Group : SmallGroup(576,8545)
Rank : 5
Schlafli Type : {6,12,2,2}
Number of vertices, edges, etc : 6, 36, 12, 2, 2
Order of s0s1s2s3s4 : 12
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{6,12,2,2,2} of size 1152
{6,12,2,2,3} of size 1728
Vertex Figure Of :
{2,6,12,2,2} of size 1152
{3,6,12,2,2} of size 1728
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {6,6,2,2}*288b
3-fold quotients : {2,12,2,2}*192
4-fold quotients : {6,3,2,2}*144
6-fold quotients : {2,6,2,2}*96
9-fold quotients : {2,4,2,2}*64
12-fold quotients : {2,3,2,2}*48
18-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
2-fold covers : {6,12,4,2}*1152b, {12,12,2,2}*1152b, {6,12,2,4}*1152c, {6,24,2,2}*1152c
3-fold covers : {6,36,2,2}*1728b, {6,12,2,2}*1728a, {6,12,2,6}*1728b, {6,12,6,2}*1728c, {6,12,6,2}*1728e, {6,12,2,2}*1728g
Permutation Representation (GAP) :
```s0 := ( 2, 3)( 5, 6)( 8, 9)(11,12)(14,15)(17,18)(20,21)(23,24)(26,27)(29,30)
(32,33)(35,36)(38,39)(41,42)(44,45)(47,48)(50,51)(53,54)(56,57)(59,60)(62,63)
(65,66)(68,69)(71,72);;
s1 := ( 1,38)( 2,37)( 3,39)( 4,44)( 5,43)( 6,45)( 7,41)( 8,40)( 9,42)(10,47)
(11,46)(12,48)(13,53)(14,52)(15,54)(16,50)(17,49)(18,51)(19,65)(20,64)(21,66)
(22,71)(23,70)(24,72)(25,68)(26,67)(27,69)(28,56)(29,55)(30,57)(31,62)(32,61)
(33,63)(34,59)(35,58)(36,60);;
s2 := ( 1,58)( 2,60)( 3,59)( 4,55)( 5,57)( 6,56)( 7,61)( 8,63)( 9,62)(10,67)
(11,69)(12,68)(13,64)(14,66)(15,65)(16,70)(17,72)(18,71)(19,40)(20,42)(21,41)
(22,37)(23,39)(24,38)(25,43)(26,45)(27,44)(28,49)(29,51)(30,50)(31,46)(32,48)
(33,47)(34,52)(35,54)(36,53);;
s3 := (73,74);;
s4 := (75,76);;
poly := Group([s0,s1,s2,s3,s4]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s3*s4*s3*s4, s2*s0*s1*s0*s1*s2*s0*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(76)!( 2, 3)( 5, 6)( 8, 9)(11,12)(14,15)(17,18)(20,21)(23,24)(26,27)
(29,30)(32,33)(35,36)(38,39)(41,42)(44,45)(47,48)(50,51)(53,54)(56,57)(59,60)
(62,63)(65,66)(68,69)(71,72);
s1 := Sym(76)!( 1,38)( 2,37)( 3,39)( 4,44)( 5,43)( 6,45)( 7,41)( 8,40)( 9,42)
(10,47)(11,46)(12,48)(13,53)(14,52)(15,54)(16,50)(17,49)(18,51)(19,65)(20,64)
(21,66)(22,71)(23,70)(24,72)(25,68)(26,67)(27,69)(28,56)(29,55)(30,57)(31,62)
(32,61)(33,63)(34,59)(35,58)(36,60);
s2 := Sym(76)!( 1,58)( 2,60)( 3,59)( 4,55)( 5,57)( 6,56)( 7,61)( 8,63)( 9,62)
(10,67)(11,69)(12,68)(13,64)(14,66)(15,65)(16,70)(17,72)(18,71)(19,40)(20,42)
(21,41)(22,37)(23,39)(24,38)(25,43)(26,45)(27,44)(28,49)(29,51)(30,50)(31,46)
(32,48)(33,47)(34,52)(35,54)(36,53);
s3 := Sym(76)!(73,74);
s4 := Sym(76)!(75,76);
poly := sub<Sym(76)|s0,s1,s2,s3,s4>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s2*s0*s1*s0*s1*s2*s0*s1*s0*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;

```

to this polytope