Questions?
See the FAQ
or other info.

# Polytope of Type {2,4,2,6,3}

Atlas Canonical Name : {2,4,2,6,3}*576
if this polytope has a name.
Group : SmallGroup(576,8553)
Rank : 6
Schlafli Type : {2,4,2,6,3}
Number of vertices, edges, etc : 2, 4, 4, 6, 9, 3
Order of s0s1s2s3s4s5 : 12
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{2,4,2,6,3,2} of size 1152
Vertex Figure Of :
{2,2,4,2,6,3} of size 1152
{3,2,4,2,6,3} of size 1728
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,2,2,6,3}*288
3-fold quotients : {2,4,2,2,3}*192
6-fold quotients : {2,2,2,2,3}*96
Covers (Minimal Covers in Boldface) :
2-fold covers : {4,4,2,6,3}*1152, {2,4,4,6,3}*1152, {2,8,2,6,3}*1152, {2,4,2,6,6}*1152b
3-fold covers : {2,4,2,6,9}*1728, {2,4,2,6,3}*1728, {2,12,2,6,3}*1728, {6,4,2,6,3}*1728a, {2,4,6,6,3}*1728d
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (4,5);;
s2 := (3,4)(5,6);;
s3 := (10,11)(12,13)(14,15);;
s4 := ( 7,10)( 8,14)( 9,12)(13,15);;
s5 := ( 7, 8)(10,13)(11,12)(14,15);;
poly := Group([s0,s1,s2,s3,s4,s5]);;

Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  s5 := F.6;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s0*s5*s0*s5,
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5,
s4*s5*s4*s5*s4*s5, s1*s2*s1*s2*s1*s2*s1*s2,
s5*s3*s4*s3*s4*s5*s3*s4*s3*s4 ];;
poly := F / rels;;

Permutation Representation (Magma) :
s0 := Sym(15)!(1,2);
s1 := Sym(15)!(4,5);
s2 := Sym(15)!(3,4)(5,6);
s3 := Sym(15)!(10,11)(12,13)(14,15);
s4 := Sym(15)!( 7,10)( 8,14)( 9,12)(13,15);
s5 := Sym(15)!( 7, 8)(10,13)(11,12)(14,15);
poly := sub<Sym(15)|s0,s1,s2,s3,s4,s5>;

Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s0*s1*s0*s1, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5,
s3*s5*s3*s5, s4*s5*s4*s5*s4*s5, s1*s2*s1*s2*s1*s2*s1*s2,
s5*s3*s4*s3*s4*s5*s3*s4*s3*s4 >;

to this polytope