Questions?
See the FAQ
or other info.

Polytope of Type {6,12,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,12,2}*576a
if this polytope has a name.
Group : SmallGroup(576,8659)
Rank : 4
Schlafli Type : {6,12,2}
Number of vertices, edges, etc : 12, 72, 24, 2
Order of s0s1s2s3 : 6
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {6,12,2,2} of size 1152
   {6,12,2,3} of size 1728
Vertex Figure Of :
   {2,6,12,2} of size 1152
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {6,12,2}*288d
   3-fold quotients : {6,4,2}*192
   4-fold quotients : {6,6,2}*144a
   6-fold quotients : {3,4,2}*96, {6,4,2}*96b, {6,4,2}*96c
   12-fold quotients : {3,4,2}*48, {2,6,2}*48, {6,2,2}*48
   24-fold quotients : {2,3,2}*24, {3,2,2}*24
   36-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   2-fold covers : {12,12,2}*1152d, {6,12,2}*1152b, {6,12,4}*1152i, {6,24,2}*1152c, {6,24,2}*1152e, {12,12,2}*1152j
   3-fold covers : {6,36,2}*1728, {18,12,2}*1728a, {6,12,2}*1728b, {6,12,6}*1728i, {6,12,6}*1728k, {6,12,2}*1728c
Permutation Representation (GAP) :
s0 := ( 2, 3)( 6, 7)(10,11)(13,25)(14,27)(15,26)(16,28)(17,29)(18,31)(19,30)
(20,32)(21,33)(22,35)(23,34)(24,36)(38,39)(42,43)(46,47)(49,61)(50,63)(51,62)
(52,64)(53,65)(54,67)(55,66)(56,68)(57,69)(58,71)(59,70)(60,72);;
s1 := ( 1,13)( 2,14)( 3,16)( 4,15)( 5,21)( 6,22)( 7,24)( 8,23)( 9,17)(10,18)
(11,20)(12,19)(27,28)(29,33)(30,34)(31,36)(32,35)(37,49)(38,50)(39,52)(40,51)
(41,57)(42,58)(43,60)(44,59)(45,53)(46,54)(47,56)(48,55)(63,64)(65,69)(66,70)
(67,72)(68,71);;
s2 := ( 1,44)( 2,43)( 3,42)( 4,41)( 5,40)( 6,39)( 7,38)( 8,37)( 9,48)(10,47)
(11,46)(12,45)(13,56)(14,55)(15,54)(16,53)(17,52)(18,51)(19,50)(20,49)(21,60)
(22,59)(23,58)(24,57)(25,68)(26,67)(27,66)(28,65)(29,64)(30,63)(31,62)(32,61)
(33,72)(34,71)(35,70)(36,69);;
s3 := (73,74);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1, 
s2*s0*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(74)!( 2, 3)( 6, 7)(10,11)(13,25)(14,27)(15,26)(16,28)(17,29)(18,31)
(19,30)(20,32)(21,33)(22,35)(23,34)(24,36)(38,39)(42,43)(46,47)(49,61)(50,63)
(51,62)(52,64)(53,65)(54,67)(55,66)(56,68)(57,69)(58,71)(59,70)(60,72);
s1 := Sym(74)!( 1,13)( 2,14)( 3,16)( 4,15)( 5,21)( 6,22)( 7,24)( 8,23)( 9,17)
(10,18)(11,20)(12,19)(27,28)(29,33)(30,34)(31,36)(32,35)(37,49)(38,50)(39,52)
(40,51)(41,57)(42,58)(43,60)(44,59)(45,53)(46,54)(47,56)(48,55)(63,64)(65,69)
(66,70)(67,72)(68,71);
s2 := Sym(74)!( 1,44)( 2,43)( 3,42)( 4,41)( 5,40)( 6,39)( 7,38)( 8,37)( 9,48)
(10,47)(11,46)(12,45)(13,56)(14,55)(15,54)(16,53)(17,52)(18,51)(19,50)(20,49)
(21,60)(22,59)(23,58)(24,57)(25,68)(26,67)(27,66)(28,65)(29,64)(30,63)(31,62)
(32,61)(33,72)(34,71)(35,70)(36,69);
s3 := Sym(74)!(73,74);
poly := sub<Sym(74)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1, 
s2*s0*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1 >; 
 

to this polytope