Questions?
See the FAQ
or other info.

# Polytope of Type {3,2,4,6}

Atlas Canonical Name : {3,2,4,6}*576
if this polytope has a name.
Group : SmallGroup(576,8659)
Rank : 5
Schlafli Type : {3,2,4,6}
Number of vertices, edges, etc : 3, 3, 8, 24, 12
Order of s0s1s2s3s4 : 6
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{3,2,4,6,2} of size 1152
Vertex Figure Of :
{2,3,2,4,6} of size 1152
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {3,2,4,3}*288, {3,2,4,6}*288b, {3,2,4,6}*288c
4-fold quotients : {3,2,4,3}*144, {3,2,2,6}*144
8-fold quotients : {3,2,2,3}*72
12-fold quotients : {3,2,2,2}*48
Covers (Minimal Covers in Boldface) :
2-fold covers : {3,2,4,12}*1152b, {3,2,4,6}*1152b, {3,2,4,12}*1152c, {3,2,8,6}*1152b, {3,2,8,6}*1152c, {6,2,4,6}*1152
3-fold covers : {9,2,4,6}*1728, {3,2,4,18}*1728, {3,6,4,6}*1728b, {3,2,12,6}*1728a, {3,2,12,6}*1728b
Permutation Representation (GAP) :
```s0 := (2,3);;
s1 := (1,2);;
s2 := ( 4, 9)( 5, 7)( 6,13)( 8,10)(11,15)(12,14)(16,19)(17,18);;
s3 := ( 7,11)( 9,14)(10,16)(13,18);;
s4 := ( 4, 6)( 5, 8)( 7,10)( 9,13)(11,17)(12,16)(14,19)(15,18);;
poly := Group([s0,s1,s2,s3,s4]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s0*s1*s0*s1*s0*s1, s2*s3*s2*s3*s2*s3*s2*s3,
s2*s3*s4*s3*s4*s3*s2*s3*s4*s3*s4*s3,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(19)!(2,3);
s1 := Sym(19)!(1,2);
s2 := Sym(19)!( 4, 9)( 5, 7)( 6,13)( 8,10)(11,15)(12,14)(16,19)(17,18);
s3 := Sym(19)!( 7,11)( 9,14)(10,16)(13,18);
s4 := Sym(19)!( 4, 6)( 5, 8)( 7,10)( 9,13)(11,17)(12,16)(14,19)(15,18);
poly := sub<Sym(19)|s0,s1,s2,s3,s4>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3, s2*s3*s4*s3*s4*s3*s2*s3*s4*s3*s4*s3,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >;

```

to this polytope