Questions?
See the FAQ
or other info.

Polytope of Type {6,10,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,10,2}*600
if this polytope has a name.
Group : SmallGroup(600,154)
Rank : 4
Schlafli Type : {6,10,2}
Number of vertices, edges, etc : 15, 75, 25, 2
Order of s0s1s2s3 : 6
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {6,10,2,2} of size 1200
   {6,10,2,3} of size 1800
Vertex Figure Of :
   {2,6,10,2} of size 1200
Quotients (Maximal Quotients in Boldface) :
   No Regular Quotients.
Covers (Minimal Covers in Boldface) :
   2-fold covers : {6,10,2}*1200a
   3-fold covers : {18,10,2}*1800, {6,30,2}*1800
Permutation Representation (GAP) :
s0 := ( 6,23)( 7,24)( 8,25)( 9,21)(10,22)(11,20)(12,16)(13,17)(14,18)(15,19);;
s1 := ( 2, 8)( 3,15)( 4,17)( 5,24)( 6,18)( 7,25)(10,11)(13,19)(14,21)(16,22);;
s2 := ( 1, 2)( 3, 5)( 6,22)( 7,21)( 8,25)( 9,24)(10,23)(11,17)(12,16)(13,20)
(14,19)(15,18);;
s3 := (26,27);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s1*s2*s0*s1*s2*s0*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(27)!( 6,23)( 7,24)( 8,25)( 9,21)(10,22)(11,20)(12,16)(13,17)(14,18)
(15,19);
s1 := Sym(27)!( 2, 8)( 3,15)( 4,17)( 5,24)( 6,18)( 7,25)(10,11)(13,19)(14,21)
(16,22);
s2 := Sym(27)!( 1, 2)( 3, 5)( 6,22)( 7,21)( 8,25)( 9,24)(10,23)(11,17)(12,16)
(13,20)(14,19)(15,18);
s3 := Sym(27)!(26,27);
poly := sub<Sym(27)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s0*s1*s2*s0*s1*s2*s0*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope