Questions?
See the FAQ
or other info.

Polytope of Type {150,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {150,2}*600
if this polytope has a name.
Group : SmallGroup(600,43)
Rank : 3
Schlafli Type : {150,2}
Number of vertices, edges, etc : 150, 150, 2
Order of s0s1s2 : 150
Order of s0s1s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
   Flat
   Self-Petrie
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
Facet Of :
   {150,2,2} of size 1200
   {150,2,3} of size 1800
Vertex Figure Of :
   {2,150,2} of size 1200
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {75,2}*300
   3-fold quotients : {50,2}*200
   5-fold quotients : {30,2}*120
   6-fold quotients : {25,2}*100
   10-fold quotients : {15,2}*60
   15-fold quotients : {10,2}*40
   25-fold quotients : {6,2}*24
   30-fold quotients : {5,2}*20
   50-fold quotients : {3,2}*12
   75-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   2-fold covers : {300,2}*1200, {150,4}*1200a
   3-fold covers : {450,2}*1800, {150,6}*1800b, {150,6}*1800c
Permutation Representation (GAP) :
s0 := (  2,  5)(  3,  4)(  6, 22)(  7, 21)(  8, 25)(  9, 24)( 10, 23)( 11, 17)
( 12, 16)( 13, 20)( 14, 19)( 15, 18)( 26, 51)( 27, 55)( 28, 54)( 29, 53)
( 30, 52)( 31, 72)( 32, 71)( 33, 75)( 34, 74)( 35, 73)( 36, 67)( 37, 66)
( 38, 70)( 39, 69)( 40, 68)( 41, 62)( 42, 61)( 43, 65)( 44, 64)( 45, 63)
( 46, 57)( 47, 56)( 48, 60)( 49, 59)( 50, 58)( 77, 80)( 78, 79)( 81, 97)
( 82, 96)( 83,100)( 84, 99)( 85, 98)( 86, 92)( 87, 91)( 88, 95)( 89, 94)
( 90, 93)(101,126)(102,130)(103,129)(104,128)(105,127)(106,147)(107,146)
(108,150)(109,149)(110,148)(111,142)(112,141)(113,145)(114,144)(115,143)
(116,137)(117,136)(118,140)(119,139)(120,138)(121,132)(122,131)(123,135)
(124,134)(125,133);;
s1 := (  1,106)(  2,110)(  3,109)(  4,108)(  5,107)(  6,101)(  7,105)(  8,104)
(  9,103)( 10,102)( 11,122)( 12,121)( 13,125)( 14,124)( 15,123)( 16,117)
( 17,116)( 18,120)( 19,119)( 20,118)( 21,112)( 22,111)( 23,115)( 24,114)
( 25,113)( 26, 81)( 27, 85)( 28, 84)( 29, 83)( 30, 82)( 31, 76)( 32, 80)
( 33, 79)( 34, 78)( 35, 77)( 36, 97)( 37, 96)( 38,100)( 39, 99)( 40, 98)
( 41, 92)( 42, 91)( 43, 95)( 44, 94)( 45, 93)( 46, 87)( 47, 86)( 48, 90)
( 49, 89)( 50, 88)( 51,131)( 52,135)( 53,134)( 54,133)( 55,132)( 56,126)
( 57,130)( 58,129)( 59,128)( 60,127)( 61,147)( 62,146)( 63,150)( 64,149)
( 65,148)( 66,142)( 67,141)( 68,145)( 69,144)( 70,143)( 71,137)( 72,136)
( 73,140)( 74,139)( 75,138);;
s2 := (151,152);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(152)!(  2,  5)(  3,  4)(  6, 22)(  7, 21)(  8, 25)(  9, 24)( 10, 23)
( 11, 17)( 12, 16)( 13, 20)( 14, 19)( 15, 18)( 26, 51)( 27, 55)( 28, 54)
( 29, 53)( 30, 52)( 31, 72)( 32, 71)( 33, 75)( 34, 74)( 35, 73)( 36, 67)
( 37, 66)( 38, 70)( 39, 69)( 40, 68)( 41, 62)( 42, 61)( 43, 65)( 44, 64)
( 45, 63)( 46, 57)( 47, 56)( 48, 60)( 49, 59)( 50, 58)( 77, 80)( 78, 79)
( 81, 97)( 82, 96)( 83,100)( 84, 99)( 85, 98)( 86, 92)( 87, 91)( 88, 95)
( 89, 94)( 90, 93)(101,126)(102,130)(103,129)(104,128)(105,127)(106,147)
(107,146)(108,150)(109,149)(110,148)(111,142)(112,141)(113,145)(114,144)
(115,143)(116,137)(117,136)(118,140)(119,139)(120,138)(121,132)(122,131)
(123,135)(124,134)(125,133);
s1 := Sym(152)!(  1,106)(  2,110)(  3,109)(  4,108)(  5,107)(  6,101)(  7,105)
(  8,104)(  9,103)( 10,102)( 11,122)( 12,121)( 13,125)( 14,124)( 15,123)
( 16,117)( 17,116)( 18,120)( 19,119)( 20,118)( 21,112)( 22,111)( 23,115)
( 24,114)( 25,113)( 26, 81)( 27, 85)( 28, 84)( 29, 83)( 30, 82)( 31, 76)
( 32, 80)( 33, 79)( 34, 78)( 35, 77)( 36, 97)( 37, 96)( 38,100)( 39, 99)
( 40, 98)( 41, 92)( 42, 91)( 43, 95)( 44, 94)( 45, 93)( 46, 87)( 47, 86)
( 48, 90)( 49, 89)( 50, 88)( 51,131)( 52,135)( 53,134)( 54,133)( 55,132)
( 56,126)( 57,130)( 58,129)( 59,128)( 60,127)( 61,147)( 62,146)( 63,150)
( 64,149)( 65,148)( 66,142)( 67,141)( 68,145)( 69,144)( 70,143)( 71,137)
( 72,136)( 73,140)( 74,139)( 75,138);
s2 := Sym(152)!(151,152);
poly := sub<Sym(152)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope