Questions?
See the FAQ
or other info.

Polytope of Type {12,26}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {12,26}*624
Also Known As : {12,26|2}. if this polytope has another name.
Group : SmallGroup(624,178)
Rank : 3
Schlafli Type : {12,26}
Number of vertices, edges, etc : 12, 156, 26
Order of s0s1s2 : 156
Order of s0s1s2s1 : 2
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {12,26,2} of size 1248
Vertex Figure Of :
   {2,12,26} of size 1248
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {6,26}*312
   3-fold quotients : {4,26}*208
   6-fold quotients : {2,26}*104
   12-fold quotients : {2,13}*52
   13-fold quotients : {12,2}*48
   26-fold quotients : {6,2}*24
   39-fold quotients : {4,2}*16
   52-fold quotients : {3,2}*12
   78-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   2-fold covers : {24,26}*1248, {12,52}*1248
   3-fold covers : {36,26}*1872, {12,78}*1872a, {12,78}*1872b
Permutation Representation (GAP) :
s0 := ( 14, 27)( 15, 28)( 16, 29)( 17, 30)( 18, 31)( 19, 32)( 20, 33)( 21, 34)
( 22, 35)( 23, 36)( 24, 37)( 25, 38)( 26, 39)( 53, 66)( 54, 67)( 55, 68)
( 56, 69)( 57, 70)( 58, 71)( 59, 72)( 60, 73)( 61, 74)( 62, 75)( 63, 76)
( 64, 77)( 65, 78)( 79,118)( 80,119)( 81,120)( 82,121)( 83,122)( 84,123)
( 85,124)( 86,125)( 87,126)( 88,127)( 89,128)( 90,129)( 91,130)( 92,144)
( 93,145)( 94,146)( 95,147)( 96,148)( 97,149)( 98,150)( 99,151)(100,152)
(101,153)(102,154)(103,155)(104,156)(105,131)(106,132)(107,133)(108,134)
(109,135)(110,136)(111,137)(112,138)(113,139)(114,140)(115,141)(116,142)
(117,143);;
s1 := (  1, 92)(  2,104)(  3,103)(  4,102)(  5,101)(  6,100)(  7, 99)(  8, 98)
(  9, 97)( 10, 96)( 11, 95)( 12, 94)( 13, 93)( 14, 79)( 15, 91)( 16, 90)
( 17, 89)( 18, 88)( 19, 87)( 20, 86)( 21, 85)( 22, 84)( 23, 83)( 24, 82)
( 25, 81)( 26, 80)( 27,105)( 28,117)( 29,116)( 30,115)( 31,114)( 32,113)
( 33,112)( 34,111)( 35,110)( 36,109)( 37,108)( 38,107)( 39,106)( 40,131)
( 41,143)( 42,142)( 43,141)( 44,140)( 45,139)( 46,138)( 47,137)( 48,136)
( 49,135)( 50,134)( 51,133)( 52,132)( 53,118)( 54,130)( 55,129)( 56,128)
( 57,127)( 58,126)( 59,125)( 60,124)( 61,123)( 62,122)( 63,121)( 64,120)
( 65,119)( 66,144)( 67,156)( 68,155)( 69,154)( 70,153)( 71,152)( 72,151)
( 73,150)( 74,149)( 75,148)( 76,147)( 77,146)( 78,145);;
s2 := (  1,  2)(  3, 13)(  4, 12)(  5, 11)(  6, 10)(  7,  9)( 14, 15)( 16, 26)
( 17, 25)( 18, 24)( 19, 23)( 20, 22)( 27, 28)( 29, 39)( 30, 38)( 31, 37)
( 32, 36)( 33, 35)( 40, 41)( 42, 52)( 43, 51)( 44, 50)( 45, 49)( 46, 48)
( 53, 54)( 55, 65)( 56, 64)( 57, 63)( 58, 62)( 59, 61)( 66, 67)( 68, 78)
( 69, 77)( 70, 76)( 71, 75)( 72, 74)( 79, 80)( 81, 91)( 82, 90)( 83, 89)
( 84, 88)( 85, 87)( 92, 93)( 94,104)( 95,103)( 96,102)( 97,101)( 98,100)
(105,106)(107,117)(108,116)(109,115)(110,114)(111,113)(118,119)(120,130)
(121,129)(122,128)(123,127)(124,126)(131,132)(133,143)(134,142)(135,141)
(136,140)(137,139)(144,145)(146,156)(147,155)(148,154)(149,153)(150,152);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s2*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(156)!( 14, 27)( 15, 28)( 16, 29)( 17, 30)( 18, 31)( 19, 32)( 20, 33)
( 21, 34)( 22, 35)( 23, 36)( 24, 37)( 25, 38)( 26, 39)( 53, 66)( 54, 67)
( 55, 68)( 56, 69)( 57, 70)( 58, 71)( 59, 72)( 60, 73)( 61, 74)( 62, 75)
( 63, 76)( 64, 77)( 65, 78)( 79,118)( 80,119)( 81,120)( 82,121)( 83,122)
( 84,123)( 85,124)( 86,125)( 87,126)( 88,127)( 89,128)( 90,129)( 91,130)
( 92,144)( 93,145)( 94,146)( 95,147)( 96,148)( 97,149)( 98,150)( 99,151)
(100,152)(101,153)(102,154)(103,155)(104,156)(105,131)(106,132)(107,133)
(108,134)(109,135)(110,136)(111,137)(112,138)(113,139)(114,140)(115,141)
(116,142)(117,143);
s1 := Sym(156)!(  1, 92)(  2,104)(  3,103)(  4,102)(  5,101)(  6,100)(  7, 99)
(  8, 98)(  9, 97)( 10, 96)( 11, 95)( 12, 94)( 13, 93)( 14, 79)( 15, 91)
( 16, 90)( 17, 89)( 18, 88)( 19, 87)( 20, 86)( 21, 85)( 22, 84)( 23, 83)
( 24, 82)( 25, 81)( 26, 80)( 27,105)( 28,117)( 29,116)( 30,115)( 31,114)
( 32,113)( 33,112)( 34,111)( 35,110)( 36,109)( 37,108)( 38,107)( 39,106)
( 40,131)( 41,143)( 42,142)( 43,141)( 44,140)( 45,139)( 46,138)( 47,137)
( 48,136)( 49,135)( 50,134)( 51,133)( 52,132)( 53,118)( 54,130)( 55,129)
( 56,128)( 57,127)( 58,126)( 59,125)( 60,124)( 61,123)( 62,122)( 63,121)
( 64,120)( 65,119)( 66,144)( 67,156)( 68,155)( 69,154)( 70,153)( 71,152)
( 72,151)( 73,150)( 74,149)( 75,148)( 76,147)( 77,146)( 78,145);
s2 := Sym(156)!(  1,  2)(  3, 13)(  4, 12)(  5, 11)(  6, 10)(  7,  9)( 14, 15)
( 16, 26)( 17, 25)( 18, 24)( 19, 23)( 20, 22)( 27, 28)( 29, 39)( 30, 38)
( 31, 37)( 32, 36)( 33, 35)( 40, 41)( 42, 52)( 43, 51)( 44, 50)( 45, 49)
( 46, 48)( 53, 54)( 55, 65)( 56, 64)( 57, 63)( 58, 62)( 59, 61)( 66, 67)
( 68, 78)( 69, 77)( 70, 76)( 71, 75)( 72, 74)( 79, 80)( 81, 91)( 82, 90)
( 83, 89)( 84, 88)( 85, 87)( 92, 93)( 94,104)( 95,103)( 96,102)( 97,101)
( 98,100)(105,106)(107,117)(108,116)(109,115)(110,114)(111,113)(118,119)
(120,130)(121,129)(122,128)(123,127)(124,126)(131,132)(133,143)(134,142)
(135,141)(136,140)(137,139)(144,145)(146,156)(147,155)(148,154)(149,153)
(150,152);
poly := sub<Sym(156)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s2*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 
References : None.
to this polytope