Questions?
See the FAQ
or other info.

Polytope of Type {4,8}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,8}*64b
if this polytope has a name.
Group : SmallGroup(64,134)
Rank : 3
Schlafli Type : {4,8}
Number of vertices, edges, etc : 4, 16, 8
Order of s0s1s2 : 8
Order of s0s1s2s1 : 4
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {4,8,2} of size 128
   {4,8,4} of size 256
   {4,8,4} of size 256
   {4,8,6} of size 384
   {4,8,8} of size 512
   {4,8,8} of size 512
   {4,8,8} of size 512
   {4,8,8} of size 512
   {4,8,4} of size 512
   {4,8,4} of size 512
   {4,8,10} of size 640
   {4,8,12} of size 768
   {4,8,12} of size 768
   {4,8,3} of size 768
   {4,8,14} of size 896
   {4,8,18} of size 1152
   {4,8,6} of size 1152
   {4,8,20} of size 1280
   {4,8,20} of size 1280
   {4,8,22} of size 1408
   {4,8,26} of size 1664
   {4,8,28} of size 1792
   {4,8,28} of size 1792
   {4,8,30} of size 1920
Vertex Figure Of :
   {2,4,8} of size 128
   {4,4,8} of size 256
   {6,4,8} of size 384
   {8,4,8} of size 512
   {4,4,8} of size 512
   {8,4,8} of size 512
   {10,4,8} of size 640
   {12,4,8} of size 768
   {14,4,8} of size 896
   {18,4,8} of size 1152
   {6,4,8} of size 1152
   {20,4,8} of size 1280
   {22,4,8} of size 1408
   {26,4,8} of size 1664
   {28,4,8} of size 1792
   {30,4,8} of size 1920
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {4,4}*32
   4-fold quotients : {2,4}*16, {4,2}*16
   8-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   2-fold covers : {4,8}*128a, {8,8}*128c, {8,8}*128d
   3-fold covers : {4,24}*192b, {12,8}*192b
   4-fold covers : {8,8}*256a, {4,8}*256a, {8,8}*256c, {4,16}*256a, {4,16}*256b, {8,16}*256a, {8,16}*256b, {16,8}*256c, {16,8}*256e
   5-fold covers : {4,40}*320b, {20,8}*320b
   6-fold covers : {4,24}*384a, {24,8}*384a, {12,8}*384a, {8,24}*384c, {24,8}*384c, {8,24}*384d
   7-fold covers : {4,56}*448b, {28,8}*448b
   8-fold covers : {4,16}*512a, {8,16}*512a, {8,16}*512b, {16,16}*512c, {16,16}*512f, {16,16}*512i, {16,16}*512j, {8,16}*512c, {16,8}*512c, {8,16}*512d, {16,8}*512d, {8,16}*512e, {16,8}*512e, {8,16}*512f, {16,8}*512f, {8,8}*512a, {8,8}*512b, {8,8}*512c, {4,8}*512a, {8,8}*512e, {4,16}*512b, {4,8}*512b, {4,8}*512c, {8,8}*512j, {8,8}*512k, {4,16}*512c, {4,16}*512d, {8,8}*512p, {8,8}*512r, {8,16}*512g, {8,16}*512h, {4,32}*512a, {4,32}*512b, {32,8}*512a, {32,8}*512c
   9-fold covers : {4,72}*576b, {36,8}*576b, {12,24}*576a, {12,24}*576e, {12,24}*576f, {4,8}*576b, {4,24}*576b, {12,8}*576b
   10-fold covers : {4,40}*640a, {40,8}*640a, {20,8}*640a, {8,40}*640c, {40,8}*640c, {8,40}*640d
   11-fold covers : {4,88}*704b, {44,8}*704b
   12-fold covers : {8,24}*768a, {24,8}*768a, {12,8}*768a, {4,24}*768a, {24,8}*768c, {8,24}*768d, {12,16}*768a, {4,48}*768a, {12,16}*768b, {4,48}*768b, {8,48}*768a, {24,16}*768a, {8,48}*768b, {24,16}*768b, {16,24}*768c, {48,8}*768c, {16,24}*768e, {48,8}*768e, {4,24}*768j, {12,8}*768w, {12,24}*768e
   13-fold covers : {4,104}*832b, {52,8}*832b
   14-fold covers : {4,56}*896a, {56,8}*896a, {28,8}*896a, {8,56}*896c, {56,8}*896c, {8,56}*896d
   15-fold covers : {20,24}*960b, {12,40}*960b, {4,120}*960b, {60,8}*960b
   17-fold covers : {68,8}*1088b, {4,136}*1088b
   18-fold covers : {36,8}*1152a, {4,72}*1152a, {12,24}*1152a, {12,24}*1152b, {12,24}*1152c, {4,8}*1152a, {4,24}*1152a, {12,8}*1152a, {8,72}*1152a, {72,8}*1152b, {24,24}*1152c, {24,24}*1152f, {24,24}*1152g, {24,8}*1152a, {8,8}*1152b, {8,24}*1152b, {8,72}*1152d, {72,8}*1152d, {24,24}*1152j, {24,24}*1152k, {24,24}*1152l, {8,8}*1152d, {8,24}*1152d, {24,8}*1152d
   19-fold covers : {76,8}*1216b, {4,152}*1216b
   20-fold covers : {8,40}*1280a, {40,8}*1280a, {20,8}*1280a, {4,40}*1280a, {40,8}*1280c, {8,40}*1280d, {20,16}*1280a, {4,80}*1280a, {20,16}*1280b, {4,80}*1280b, {8,80}*1280a, {40,16}*1280a, {8,80}*1280b, {40,16}*1280b, {16,40}*1280c, {80,8}*1280c, {16,40}*1280e, {80,8}*1280e
   21-fold covers : {28,24}*1344b, {12,56}*1344b, {4,168}*1344b, {84,8}*1344b
   22-fold covers : {44,8}*1408a, {4,88}*1408a, {8,88}*1408a, {88,8}*1408b, {8,88}*1408d, {88,8}*1408d
   23-fold covers : {92,8}*1472b, {4,184}*1472b
   25-fold covers : {4,200}*1600b, {100,8}*1600b, {20,40}*1600a, {20,40}*1600e, {20,40}*1600f, {4,8}*1600b, {4,40}*1600b, {20,8}*1600b
   26-fold covers : {52,8}*1664a, {4,104}*1664a, {8,104}*1664a, {104,8}*1664b, {8,104}*1664d, {104,8}*1664d
   27-fold covers : {4,216}*1728b, {108,8}*1728b, {36,24}*1728a, {12,24}*1728a, {12,72}*1728c, {12,72}*1728d, {36,24}*1728d, {12,24}*1728e, {12,24}*1728f, {4,24}*1728c, {4,24}*1728d, {12,8}*1728c, {12,24}*1728k, {12,24}*1728l, {12,8}*1728d, {12,24}*1728m, {12,24}*1728n, {12,24}*1728p, {4,24}*1728g, {4,24}*1728h, {12,8}*1728f, {12,24}*1728r, {12,8}*1728h, {12,24}*1728t, {12,24}*1728w, {12,24}*1728x
   28-fold covers : {8,56}*1792a, {56,8}*1792a, {28,8}*1792a, {4,56}*1792a, {56,8}*1792c, {8,56}*1792d, {28,16}*1792a, {4,112}*1792a, {28,16}*1792b, {4,112}*1792b, {8,112}*1792a, {56,16}*1792a, {8,112}*1792b, {56,16}*1792b, {16,56}*1792c, {112,8}*1792c, {16,56}*1792e, {112,8}*1792e
   29-fold covers : {116,8}*1856b, {4,232}*1856b
   30-fold covers : {60,8}*1920a, {4,120}*1920a, {12,40}*1920a, {20,24}*1920a, {8,120}*1920a, {120,8}*1920b, {24,40}*1920b, {40,24}*1920c, {8,120}*1920d, {120,8}*1920d, {24,40}*1920d, {40,24}*1920d
   31-fold covers : {124,8}*1984b, {4,248}*1984b
Permutation Representation (GAP) :
s0 := ( 2, 4)( 3, 6)( 5, 8)( 9,12)(11,15)(13,14);;
s1 := ( 1, 2)( 3, 5)( 4, 7)( 6, 9)( 8,11)(10,13)(12,15)(14,16);;
s2 := ( 2, 3)( 4, 6)( 5, 8)( 7,10)(11,14)(13,15);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(16)!( 2, 4)( 3, 6)( 5, 8)( 9,12)(11,15)(13,14);
s1 := Sym(16)!( 1, 2)( 3, 5)( 4, 7)( 6, 9)( 8,11)(10,13)(12,15)(14,16);
s2 := Sym(16)!( 2, 3)( 4, 6)( 5, 8)( 7,10)(11,14)(13,15);
poly := sub<Sym(16)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1 >; 
 
References : None.
to this polytope